Respuestas
Respuesta:
Para comenzar, aunque para muchos es evidente, vamos a delimitar nuestro campo de acción, es decir, vamos a ver qué números podemos expresar en forma de fracción. Éstos son los números racionales, conjunto que se denota \mathbb{Q}. Es decir, los números decimales que podemos expresar como fracción son los números decimales exactos, como 7,3 o 0,527, y los números decimales en cuya expresión decimal se repite a partir de un cierto momento una misma cantidad de cifras, denominada período, como 23,\widehat{4} o 5,43\widehat{78}. Los números decimales que no podemos expresar como fracción son los números irracionales, que suele denotarse como \mathbb{I} o \mathbb{R-Q}. Algunos ejemplos de estos números han aparecido ya en este blog en varias ocasiones: el número \pi, el número e o el número \sqrt{2}. La expresión decimal de estos números (como la de todos los irracionales) es infinita y no periódica. Por ello no pueden expresarse como una fracción.
Explicación paso a paso:
Respuesta:
Por que El número decimal que resulta de dividir el numerador de una fracción entre su denominador es siempre exacto o periódico". En efecto, piensa en el algoritmo de la división. Si tenemos la suerte de llegar a resto 0, el cociente será un decimal exacto
Explicación paso a paso:
Osea 0 o 9