Para calcular el tamaño de la muestra, utilice un nivel de confianza del 87%, un margen error absoluto de 0.388, una desviación estándar de la variable es 13 y un tamaño de población 5,268
Respuestas
Respuesta:
Planteamiento:
Utilizando la siguiente formula:
n= no/(1 + (no/N))
no = Z²S²/δ²
N: tamaño de la población
S: desviación estándar
Z: cuantil de la distribución normal estándar al nivel de significancia que se establezca
δ: margen de error absoluto.
α: nivel de significancia
Datos:
Nivel de confianza 97%
α= 1-0
Explicación:
Respuesta:
A qui te doy un ejemplo ok
Planteamiento:
Utilizando la siguiente formula:
n= no/(1 + (no/N))
no = Z²S²/δ²
N: tamaño de la población
S: desviación estándar
Z: cuantil de la distribución normal estándar al nivel de significancia que se establezca
δ: margen de error absoluto.
α: nivel de significancia
Datos:
Nivel de confianza 97%
α= 1-0,97 = 0,03 Valor que ubicamos en la tabla de distribución normal para obtener Z
Z = 1,88
δ = 0,157
S = 33,8
N = 5105
Entonces:
no = (1,88)²(33,8)²/(0,157)²
no =163.813,54
Tamaño de la muestra:
n = 163.813,54/ 1 + 163.813,54/5105
n = 4950,5