Ayuda por favor es examen

Adjuntos:

Respuestas

Respuesta dada por: ByMari4
1

Explicación paso a paso:

Tarea:

  • Resolver.

Solución:

Recordar:

  • En una multiplicación de bases iguales el exponente se suma.
  • En una división de bases iguales los exponentes se restan.
  •  {12}^{2}  \times  {12}^{2}  \times  {12}^{6}  =  {12}^{10}
  •  { \frac{4}{2} }^{3}  \times  { \frac{4}{2} }^{5}  \times   { \frac{4}{2} }^{4}  =  { \frac{4}{2} }^{12}
  •  {15}^{2}  \times  {15}^{4}   \times    {15}^{ \frac{1}{2} }  =  {15}^{6 +  \frac{1}{2} }  =  {15}^{  \frac{13}{2} }
  •  {2}^{ \frac{1}{3} }  \times  {2}^{ \frac{1}{3} }  \times  {2}^{ \frac{1}{3} }  =  {2}^{ \frac{3}{3} }  =  {2}^{1}  = 2
  • ( \frac{5}{8} ) {}^{ \frac{4}{6} }  \times  (\frac{5}{8} ) {}^{ \frac{4}{6} }  \times  (\frac{5}{8} ) {}^{ \frac{4}{6} }  =(  \frac{5}{8} ) {}^{ \frac{12}{6} }  = ( \frac{5}{8} ) {}^{2}
  •  \frac{ {2}^{8} }{ {2}^{4} }  =  {2}^{8 - 4}  =  {2}^{2}
  •  \frac{ {15}^{21} }{ {15}^{12} }  =  {15}^{21 - 12}  =  {15}^{9}
  •  \frac{ {12}^{7} }{ {12}^{11} }  =  {12}^{7 - 11}  =  {12}^{ - 4}
  •  \frac{ {16}^{ - 8} }{ {16}^{ - 2} }  =  {16}^{8 - ( - 2)}  =  {16}^{8 + 2}  =  {16}^{10}
  •  ({5}^{2} ) \frac{8}{4}  =   {5}^{ \frac{16}{4} }  =  {5}^{4}
  •  ({17}^{5}) \frac{40}{4}  = ( {17}^{2} ) {}^{10}  =  {17}^{20}
  • (( \frac{2}{5} ) {}^{2} ) {}^{2}  =  ({ \frac{2}{5} )}^{4}
  • ( {64}^{2} )  {}^{  - 2}  =  {64}^{ - 4}
  • (( \frac{9}{5} ) {}^{ - 3} ) {}^{ - 2}  = ( \frac{9}{5} ) {}^{6}
  • Espero le sirva.
Preguntas similares