Respuestas
Respuesta:
la guanina
espero que te ayude, dame coronita
Respuesta:
Base nitrogenada
Apareamiento G≡C con tres puentes de hidrógeno.
Apareamiento A=T con dos puentes de hidrógeno. Los puentes de hidrógeno se muestran como líneas discontinuas.
Las bases nitrogenadas (también llamadas nucleobases, sinónimo cada vez más empleado en las ciencias biológicas) son compuestos orgánicos cíclicos, que incluyen dos o más átomos de nitrógeno. Son parte fundamental de los nucleósidos, nucleótidos, nucleótidos cíclicos (mensajeros intracelulares), dinucleótidos (poder reductor) y ácidos nucleicos.
Biológicamente existen seis bases nitrogenadas relevantes (en realidad hay muchas más), que se clasifican en tres grupos: bases isoaloxazínicas (derivadas de la estructura de la isoaloxazina), bases púricas o purinas (derivadas de la estructura de la purina) y bases pirimidínicas, también llamadas bases pirimídicas o pirimidinas (derivadas de la estructura de la pirimidina). 1La flavina (F) es isoaloxazínica, la adenina (A) la guanina (G) son púricas, la citosina (C), la timina (T) y el uracilo (U) son pirimidínicas.2 Por comodidad, cada una de las bases se representa por la letra indicada. La adenina (A), timina (T), guanina (G) y citosina (C) se encuentran en el ADN, mientras que en el ARN el uracilo (U) toma el lugar de la timina (T). La flavina no forma parte del ADN o del ARN, pero sí de algunos compuestos importantes como el FAD.
Índice
1 Complementariedad entre purinas y pirimidinas
2 Estructura
2.1 Isoaloxazinas
2.2 Purinas
2.3 Pirimidinas
3 Referencias
4 Véase también
Complementariedad entre purinas y pirimidinas
Las purinas (adenina y guanina) son aminas heterocíclicas, que se caracterizan por que en su estructura hay un doble anillo, ambas se localizan en los ácidos nucleicos, ARN y ADN.3
Las pirimidinas (timina, uracilo, citosina) son aminas heterocíclicas que, a diferencia de las purinas, cuentan únicamente con un anillo en su estructura.
Por la forma en que se enlazan, las purinas y pirimidinas son complementarias entre sí, es decir, forman parejas de igual manera que lo harían una llave y su cerradura; son los denominados apareamientos de Watson y Crick. La adenina y la timina son complementarias (A=T), unidas a través de dos puentes de hidrógeno, mientras que la guanina y la citosina (G≡C) se unen mediante tres puentes de hidrógeno. Dado que el ARN no contiene timina, la complementariedad se establece entre adenina y uracilo (A=U) mediante dos puentes de hidrógeno. La complementariedad de las bases es la clave de la estructura del ADN y tiene importantes implicaciones, pues permite procesos como la replicación del ADN, la transcripción (generación de ARN a partir de ADN) y la traducción del ARN en proteínas.
Estructura
El "esqueleto" de las flavinas es la isoaloxazina, por lo que son bases isoaloxazínicas.
El "esqueleto" de adenina, hipoxantina, xantina, etc. Es la purina, por lo que toman el nombre de bases púricas.
El "esqueleto" de citosina, uracilo y timina es la pirimidina; son bases pirimídicas.
Isoaloxazinas
Base nitrogenada Nucleósido
Equilibrio químico de flavina
Flavina
Estructura química de riboflavina
Riboflavina
F
Purinas
Base nitrogenada Nucleósido
Estructura química de adenina
Adenina
Estructura química de adenosina
Adenosina
A
Estructura química de guanina
Guanina
Estructura química de guanosina
Guanosina
G
Pirimidinas
Base nitrogenada Nucleósido
Chemical structure of thymine
Timina
Chemical structure of thymidine
Timidina
T
Chemical structure of cytosine
Citosina
Chemical structure of cytidine
Citidina
C
Chemical structure of uracil
Uracilo
Chemical structure of uridine
Uridina
U
Explicación:
Usa esta información.