Hallar la ecuación de un elipse que tiene un eje mayor de longitud 8 y focos en (7,3) y (1,3) .

Respuestas

Respuesta dada por: mariajoseecheverrimo
0

Respuesta:

Buscamos que la suma de las distancias \overline{PF_1} y \overline{PF_2} sea siempre igual a 8, es decir,

 

\displaystyle \overline{PF_1} + \overline{PF_2} = 8

 

Por lo tanto, tenemos que,

 

\displaystyle \sqrt{(x + 2)^2 + (y - 2)^2} + \sqrt{(x - 4)^2 + (y - 2)^2} = 8

 

Si despejamos una raíz, se obtiene

 

\displaystyle \sqrt{(x + 2)^2 + (y - 2)^2}  = 8 - \sqrt{(x - 4)^2 + (y - 2)^2}

 

Luego, elevando al cuadrado, tenemos que

 

\displaystyle (x+2)^2 + (y-2)^2 = 64 - 16\sqrt{(x - 4)^2 + (y - 2)^2} + (x -4)^2 + (y - 2)^2

 

Observemos que el término (y-2)^{2} se encuentra a ambos lados de la ecuación. Por tanto, podemos cancelarlo, de manera que nos queda

 

\displaystyle (x+2)^2 = 64 - 16\sqrt{(x - 4)^2 + (y - 2)^2} + (x -4)^2

 

Si expandimos los dos binomios al cuadrado, tendremos que,

 

\displaystyle x^2 + 4x + 4 = 64 - 16\sqrt{(x - 4)^2 + (y - 2)^2} + x^2 - 8x + 16

 

Luego, reagrupando términos semejantes )-y dividiendo la ecuación por 4—, tenemos

 

\displaystyle 3x - 19 = -4 \sqrt{(x - 4)^2 + (y - 2)^2}

 

Ya nos deshicimos de un radical. Para deshacernos del otro repetimos el procedimiento. Elevamos al cuadrado la expresión, expandemos los binomios al cuadrado y reagrupamos términos:

 

\displaystyle 9x^2 - 114x + 361 = 16\left((x - 4)^2 + (y - 2)^2 \right)

 

es decir,

 

\displaystyle 7x^2 + 16y^2 - 14x - 64y - 41 = 0

 

 

Explicación paso a paso:

Preguntas similares