Respuestas
Se cumple que: 220 por 45 = 450 por x, de donde
En la práctica esto se suele disponer del siguiente modo:
Luego 450 vacas podrán comer 22 días
Esta forma de plantear y resolver problemas sobre proporciones se conoce con el nombre de regla de tres simple inversa.
Ejemplo 2
Para envasar cierta cantidad de vino se necesitan 8 toneles de 200 litros de capacidad cada uno. Queremos envasar la misma cantidad de vino empleando 32 toneles. ¿Cuál deberá ser la capacidad de esos toneles?
Pues la cantidad de vino = 8 por 200 = 32 por x
Debemos tener 32 toneles de 50 litros de capacidad para poder envasar la misma cantidad de vino.
PROPORCIONALIDAD COMPUESTA DE MAGNITUDES
Regla de tres compuesta. Método de reducción a la unidad
Ejemplo 1: Proporcionalidad directa
Cuatro chicos durante 10 días de campamento han gastado en comer 25.000 pesos. En las mismas condiciones ¿cuánto gastarán en comer 6 chicos durante 15 días de campamento?
§ Doble número de chicos acampados el mismo número de días gastarán el doble. Luego las magnitudes número de chicos y dinero gastado son directamente proporcionales.
§ El mismo número de chicos, si acampan el doble número de días gastarán el doble. Luego las magnitudes número de días de acampada y dinero gastado son directamente proporcionales.
Hemos relacionado las dos magnitudes conocidas, nº de chicos y nº de días con la cantidad desconocida, gasto.
SABEMOS QUE4 chicos — en 10 días gastan 25.000pesosREDUCCIÓN A LA UNIDAD1 chico — en 10 días gasta 25.000/4 = 6.250pesos1 chico — en 1 día gasta 6.250/10= 625pesos 6 chicos — en 1 día gastan 625 x 6 = 3.750pesosBÚSQUEDA DEL RESULTADO6 chicos — en 15 días gastan 3.750 x 15 = 56.250pesos
Ejemplo 2: Proporcionalidad inversa
15 obreros trabajando 6 horas diarias, tardan 30 días en realizar un trabajo. ¿Cuántos días tardarán en hacer el mismo trabajo 10 obreros, empleando 8 horas diarias?
§ Doble número de obreros trabajando el mismo número de días trabajarán la mitad de horas al día para realizar el trabajo. Por tanto el número de obreros y el número de días de trabajo son inversamente proporcionales.
§ Doble número de horas diarias de trabajo el mismo número de obreros tardarán la mitad de días en realizar el trabajo. Luego el número de horas diarias de trabajo y el número de días de trabajo son inversamente proporcionales.
Hemos relacionado las dos magnitudes conocidas, nº de obreros y nº de horas diarias de trabajo, con la cantidad desconocida, nº de días de trabajo.
SABEMOS QUEREDUCCIÓN A LA UNIDADBÚSQUEDA DEL RESULTADO