• Asignatura: Matemáticas
  • Autor: andreinaafbecerra
  • hace 6 años

Hallar la moda la medio y la mediana .
a. 9,5,2,4,5,6,7,4,5,6,5, 7, 4, 2, 2, 1, 2, 4, 4,5, 2,5 ayudaaaa​

Respuestas

Respuesta dada por: sebagarridd
1

Explicación paso a paso:

( 1 , 2 , 2 , 2 , 2 , 2 , 4 , 4 , 4 , 4 , 4 , 5 , 5 , 5 , 5 , 5 , 5 , 6 , 6 , 7 , 7 , 9 )

moda = 5

mediana = 4.5

media = ( 48 / 11 ) o 4.4

( 1 + 2 × 5 + 4 × 5 + 5 × 6 + 6 × 2 + 7 × 2 + 9 ) ÷ 22

( 1 + 10 + 20 + 30 + 12 + 14 + 9 ) ÷ 22

96 ÷ 22 = 4.4

( 96 / 22 ) = ( 48 / 11 )

Respuesta dada por: melaniesol18
0

Respuesta:

La media es el valor que se obtiene al sumar todos los datos y dividir el resultado entre la cantidad de datos. La mediana es el valor que ocupa la posición central cuando todos los datos están ordenados en orden creciente o decreciente. La moda es valor que más se repite. Veamos cada una de ellas a detalle con ejemplos y ejercicios

Las medidas de tendencia central, como la media, mediana y moda, son medidas que tratan de ubicar la parte central de un conjunto de datos.

Media (media aritmética)

La media es el valor que se obtiene al sumar todos los datos y dividir el resultado entre la cantidad de datos.

Su fórmula es la siguiente:

media-mediana-y-moda-1Aunque la fórmula parezca complicada, calcular el valor de la media es muy sencillo.

Ejemplo 1

Calcular la media de los siguientes datos: 11, 6, 7, 7, 4.

media-mediana-y-moda-2

Ejemplo 2

Las edades de 8 niños que van a una fiesta son: 2, 2, 3, 5, 7, 7, 9, 10. Hallar la edad media:

media-mediana-y-moda-3

Ejemplo 3

En un examen calificado del 0 al 10, 3 personas obtuvieron 5 de nota, 5 personas obtuvieron 4 de nota, y 2 personas obtuvieron 3 de nota. Calcular la nota media:

media-mediana-y-moda-4

Mediana

La mediana es el valor que ocupa la posición central cuando todos los datos están ordenados en orden creciente o decreciente.

La mediana se representa con las letras: Me.

Ejemplo 4

Calcular la mediana de los siguientes datos: 11, 6, 7, 7, 4.

Solución:

Ordenamos los datos de menor a mayor: 4, 6, 7, 7, 11.

Ahora tomamos el dato que se encuentra al centro: 4, 6, 7, 7, 11.

El valor de la mediana es: Me = 7.

¿Y si la cantidad de datos es un número par?

En ese caso, la mediana es la media entre los dos valores centrales.

Ejemplo 5

Calcular la mediana de los siguientes datos: 3, 6, 7, 9, 4, 4.

Solución:

Primero ordenamos los datos de menor a mayor: 3, 4, 4, 6, 7, 9.

La cantidad de datos es 6, es decir, un número par, así que vamos a ubicar los 2 valores centrales: 3, 4, 4, 6, 7, 9.

Entonces, la moda sería la media entre 4 y 6:

media-mediana-y-moda-5

Ejemplo 6

En un examen calificado del 0 al 10, 3 personas obtuvieron 5 de nota, 5 personas obtuvieron 4 de nota, y 2 personas obtuvieron 3 de nota. Calcular la mediana.

Solución:

Primero hacemos una lista de las notas obtenidas: 5, 5, 5, 4, 4, 4, 4, 4, 3, 3.

Ahora ordenamos los datos de menor a mayor: 3, 3, 4, 4, 4, 4, 4, 5, 5, 5.

Como el número de datos es par (10), entonces nos enfocamos en los 2 valores centrales: 3, 3, 4, 4, 4, 4, 4, 5, 5, 5.

Finalmente, encontramos la media de estos 2 valores centrales:

media-mediana-y-moda-6

Si al momento de calcular la mediana, ordenas los datos en forma decreciente o descendente, obtendrás el mismo resultado que al hacerlo de forma creciente o ascendente .

Moda

La moda es el valor que más se repite. También podemos decir que la moda es el valor con mayor frecuencia absoluta o el valor que ocurre con más frecuencia.

La moda se representa con las letras: Mo.

Ejemplo 7

Calcular la moda de los siguientes datos: 11, 6, 7, 7, 4.

Podemos ver que el valor que más se repite es el 7, ya que tiene una frecuencia absoluta de 2, por lo tanto, Mo = 7.

Ejemplo 8

En un examen calificado del 0 al 10, 3 personas obtuvieron 5 de nota, 5 personas obtuvieron 4 de nota, y 2 personas obtuvieron 3 de nota. Calcular la moda.

Solución:

Los datos son los siguientes: 5, 5, 5, 4, 4, 4, 4, 4, 3, 3.

El valor que más se repite es el 4, que aparece 5 veces, por lo tanto, Mo = 4.

¿Y si hay varias modas?

Si en un grupo de datos, dos o más valores tienen la misma frecuencia, y es la frecuencia máxima, entonces la distribución tiene dos o más modas y decimos que es bimodal (2 modas), o multimodal (varias modas).

Ejemplo 9

Calcular la moda de los siguientes datos: 3, 4, 4, 6, 7, 7, 9, 11.

Solución:

Como vemos, hay 2 valores que se repiten 2 veces, el 4 y el 7, por lo tanto, los valores de la moda son Mo = 4; 7.

¿Y si todos los valores tienen la misma frecuencia?

Si todos los valores tienen la misma frecuencia, entonces, no hay moda.

Ejemplo 10

Encontrar la moda de los siguientes datos: 3, 3, 5, 5, 6, 6, 7, 7.

Todos los valores tienen una frecuencia de 2, por lo tanto, no hay moda.

Video

A continuación, viene el video que hemos preparado sobre media, mediana y moda con algunos ejemplos y ejercicios resueltos.

Reto

Encontrar la media, mediana y moda de los siguientes valores: 84; 91; 72; 68; 87; 78; 65; 87; 79.

Solución:

Primero calculamos la media:

ejercicio-media-mediana-y-moda

Para calcular la mediana, primero agrupamos los datos: 65; 68; 72; 78; 79; 84; 87; 87; 91.

Ahora, encontramos el valor central: 65; 68; 72; 78; 79; 84; 87; 87; 91. Por lo tanto: Me = 79.

Finalmente, encontramos la moda, y podemos ver que el 87 aparece dos veces.

Al ser el valor que se más se repite, Mo = 87.

Preguntas similares