cual es el resto de 25920​

Respuestas

Respuesta dada por: daniel98resendiz
0

Respuesta:

{\displaystyle x=\left(x_{2k-1}\cdots x_{1}x_{0}\right)_{b}} ({\displaystyle x}x en forma de lista de dígitos)

{\displaystyle m=\left(m_{k-1}\cdots m_{1},m_{0}\right)_{b}}{\displaystyle m=\left(m_{k-1}\cdots m_{1},m_{0}\right)_{b}} con {\displaystyle m_{k-1}\neq 0}{\displaystyle m_{k-1}\neq 0} ({\displaystyle m}m en forma de lista de dígitos)

{\displaystyle \mu =\left\lfloor {\frac {b^{2k}}{m}}\right\rfloor }{\displaystyle \mu =\left\lfloor {\frac {b^{2k}}{m}}\right\rfloor }

Salida: {\displaystyle x{\mbox{ mod }}m\,}{\displaystyle x{\mbox{ mod }}m\,}

{\displaystyle q_{1}\gets \left\lfloor x/b^{k-1}\right\rfloor }{\displaystyle q_{1}\gets \left\lfloor x/b^{k-1}\right\rfloor }

{\displaystyle q_{2}\gets q_{1}\times \mu }{\displaystyle q_{2}\gets q_{1}\times \mu }

{\displaystyle q_{3}\gets \left\lfloor q_{2}/b^{k-1}\right\rfloor }{\displaystyle q_{3}\gets \left\lfloor q_{2}/b^{k-1}\right\rfloor }

{\displaystyle r_{1}\gets x{\mbox{ mod }}b^{k+1}}{\displaystyle r_{1}\gets x{\mbox{ mod }}b^{k+1}}

{\displaystyle r_{2}\gets q_{3}\times m{\mbox{ mod }}b^{k+1}}{\displaystyle r_{2}\gets q_{3}\times m{\mbox{ mod }}b^{k+1}}

{\displaystyle r\gets r_{1}-r_{2}}{\displaystyle r\gets r_{1}-r_{2}}

Si {\displaystyle r<0\,}{\displaystyle r<0\,} entonces:

{\displaystyle r\gets r+b^{k-1}}{\displaystyle r\gets r+b^{k-1}}

Mientras {\displaystyle r\geq m}{\displaystyle r\geq m} haga lo siguiente:

{\displaystyle r\gets r-m}{\displaystyle r\gets r-m}

Devuelva {\displaystyle r}

Explicación paso a paso:

Preguntas similares