1.- determina las coordenadas del punto que divide al segmento cuyos extremos son A(3,5) y B(-9,-4) en la razon r=2/5


2.- un auto corre una distancia de A(-4,3) a B(4,-3), el conductor se detuvo a a cambiar una llanta en el punto P(x,y), lo unico que recuerda es que es punto se ubica en el lugar donde el segmento se divide con la razon r=-3


3.- En un maraton que inicia en el punto A(-6,10) deben colocarse cuatro estaciones de hidratacion sepradas a distancia iguales y en linea recta la meta esta situada en el punto B(8,-8), obten las coordenas de los puntos donde deben colocarse las cuatro estaciones de hidratacion.

porfa ayuda


dann76: Perdón esa no JAJJAAJA era el del autooo
dann76: Siip
dann76: Pásame el tuyo
gmarti838: gmarti838
gmarti838: sigues ahi?
dann76: Yaa te solicite seguir
gmarti838: ah ok
gmarti838: ya te acepto eh
dann76: Ya?
gmarti838: ya

Respuestas

Respuesta dada por: holiloli390
5

Respuesta:

Los puntos donde se deben encontrar las estaciones de hidratación son (-16/5, 32/5), (-2/5, 14/5), (12/5, -4/5) y (26/5, -22/5)

Para poder obtener cada uno de los puntos, debemos referirnos a las siguientes ecuaciones

\begin{gathered}P(x_1, y_1); Q(x_2, y_2)\\\\x_r = \frac{x_1 x_2 r}{1+r}\\\\y_r = \frac{y_1 + y_2r}{1+r}\end{gathered}

P(x

1

,y

1

);Q(x

2

,y

2

)

x

r

=

1+r

x

1

x

2

r

y

r

=

1+r

y

1

+y

2

r

Estas ecuaciones nos dan las coordenadas de un punto que divide a la recta PQ en una proporción r

Esto es útil debido a que queremos hallar 4 puntos que separen en ciertas proporciones a la recta AB, esos puntos van a ser las posiciones de las estaciones de hidratación. Para poder hallar las proporciones, debemos considerar la siguiente representación simplificada del problema

A ---------- | ---------- | ---------- | ---------- | ---------- B

r1 r2 r3 r4

Para poder determinar cada una de estas proporciones (r1, r2, r3 y r4) debemos seguir esta regla: los espacios que se tengan desde la izquierda hasta al punto ENTRE los espacios que se tengan desde el punto a la derecha Nota: Cada espacio se delimita por cada punto

Teniendo esta regla en claro, podemos ver que r1 tiene un espacio hacia la izquierda, mientras que tiene 4 a la derecha, es decir, r1 = 1/4. Por otro lado, r2 tiene dos lados a la izquierda y tres a la derecha, lo que implica que r2 = 2/3. Siguiendo esta idea r3 = 3/2 y r4 = 4

Teniendo las proporciones, lo que queda es calcular cada una de las coordenadas de los puntos donde se situarán las estaciones de hidratación (usando la fórmula descrita anteriormente)

Primer Ejercicio

Como sabemos que r = 1/4, entonces se puede determinar lo siguiente

\begin{gathered}A(-6, 10); B(8,-8); r = \frac{1}{4}\\\\x_r = \frac{-6+8(1/4)}{1+1/4} = \frac{-6+2}{5/4} = -\frac{16}{5}\\\\y_r = \frac{10-8(1/4)}{1+1/4} = \frac{10-2}{5/4} = \frac{32}{5}\\\\P_1(-\frac{16}{5}, \frac{32}{5})\end{gathered}

A(−6,10);B(8,−8);r=

4

1

x

r

=

1+1/4

−6+8(1/4)

=

5/4

−6+2

=−

5

16

y

r

=

1+1/4

10−8(1/4)

=

5/4

10−2

=

5

32

P

1

(−

5

16

,

5

32

)

Segundo Ejercicio

Como sabemos que r = 2/3, entonces el punto es

\begin{gathered}A(-6, 10); B(8,-8); r = \frac{2}{3}\\\\x_r = \frac{-6+8(2/3)}{1+2/3} = \frac{-6+16/3}{5/3} = \frac{(-18+16)/3}{5/3} = -\frac{2}{5}\\\\y_r = \frac{10-8(2/3)}{1+2/3} = \frac{10-16/3}{5/3} = \frac{30-16}{5}=\frac{14}{5}\\\\P_2(-\frac{2}{5}, \frac{14}{5})\end{gathered}

A(−6,10);B(8,−8);r=

3

2

x

r

=

1+2/3

−6+8(2/3)

=

5/3

−6+16/3

=

5/3

(−18+16)/3

=−

5

2

y

r

=

1+2/3

10−8(2/3)

=

5/3

10−16/3

=

5

30−16

=

5

14

P

2

(−

5

2

,

5

14

)

Tercer Ejercicio

En este caso r = 3/2, por lo que el tercer punto es

\begin{gathered}A(-6, 10); B(8,-8); r = \frac{3}{2}\\\\x_r = \frac{-6+8(3/2)}{1+3/2} = \frac{-6+12}{5/2} = \frac{6}{5/2} = \frac{12}{5}\\\\y_r = \frac{10-8(3/2)}{1+3/2} = \frac{10-12}{5/2} = \frac{-2}{5/2}=-\frac{4}{5}\\\\P_3(\frac{12}{5}, -\frac{4}{5})\end{gathered}

A(−6,10);B(8,−8);r=

2

3

x

r

=

1+3/2

−6+8(3/2)

=

5/2

−6+12

=

5/2

6

=

5

12

y

r

=

1+3/2

10−8(3/2)

=

5/2

10−12

=

5/2

−2

=−

5

4

P

3

(

5

12

,−

5

4

)

Cuarto Ejercicio

Por último, r = 4, lo que el siguiente punto

\begin{gathered}A(-6, 10); B(8,-8); r = 3\\\\x_r = \frac{-6+8*4}{1+4} = \frac{-6+32}{5} = \frac{26}{5}\\\\y_r = \frac{10-8*4}{4+1} = \frac{10-32}{5} = \frac{-22}{5}=-\frac{22}{5}\\\\P_4(\frac{26}{5}, -\frac{22}{5})\end{gathered}

A(−6,10);B(8,−8);r=3

x

r

=

1+4

−6+8∗4

=

5

−6+32

=

5

26

y

r

=

4+1

10−8∗4

=

5

10−32

=

5

−22

=−

5

22

P

4

(

5

26

,−

5

22

)

Como vimos, ya hemos hallado los puntos en los cuales se deben encontrar las estaciones de hidratación.


Cris2213: jajajajaa te mmste
Preguntas similares