• Asignatura: Química
  • Autor: vicCiela
  • hace 6 años

¿QUÉ IMPORTANCIA TIENEN LAS MAGNITUDES COMPLEMENTARIAS?

Respuestas

Respuesta dada por: DFBS
3

Respuesta:

de que tipo de magnitud hablas?

Explicación:

Las magnitudes físicas pueden ser clasificadas de acuerdo a varios criterios:

Según su expresión matemática, las magnitudes se clasifican en escalares, vectoriales y tensoriales.

Según su actividad, se clasifican en magnitudes extensivas e intensivas.

Magnitudes escalares, vectoriales y tensoriales

Las magnitudes escalares son aquellas que quedan completamente definidas por un número y las unidades utilizadas para su medida. Esto es, las magnitudes escalares están representadas por el ente matemático más simple, por un número. Podemos decir que poseen un módulo pero carecen de dirección. Su valor puede ser:

Independiente del observador (p. ej.: la masa, la temperatura, la densidad, etc.)

Depender de la posición (p. ej.: la energía potencial),

Un estado de movimiento del observador (p. ej.: la energía cinética).

Las magnitudes vectoriales son aquellas que quedan caracterizadas por una cantidad (intensidad o módulo), una dirección y un sentido. En un espacio euclidiano, de no más de tres dimensiones, un vector se representa mediante un segmento orientado. Ejemplos de estas magnitudes son: la velocidad, la aceleración, la fuerza, el campo eléctrico, intensidad luminosa, etc.

Además, al considerar otro sistema de coordenadas asociado a un observador con diferente estado de movimiento o de orientación, las magnitudes vectoriales no presentan invariancia de cada uno de los componentes del vector y, por tanto, para relacionar las medidas de diferentes observadores se necesitan relaciones de transformación vectorial. En mecánica clásica el campo electrostático se considera un vector; sin embargo, de acuerdo con la teoría de la relatividad esta magnitud, al igual que el campo magnético, debe ser tratada como parte de una magnitud tensorial.

Las magnitudes tensoriales son las que caracterizan propiedades o comportamientos físicos modelizables mediante un conjunto de números que cambian tensorialmente al elegir otro sistema de coordenadas asociado a un observador con diferente estado de movimiento (marco móvil) o de orientación.

De acuerdo con el tipo de magnitud, debemos escoger leyes de transformación (por ej. la transformación de Lorentz) de las componentes físicas de las magnitudes medidas, para poder ver si diferentes observadores hicieron la misma medida o para saber qué medidas obtendrá un observador, conocidas las de otro cuya orientación y estado de movimiento respecto al primero sean conocidos.

Magnitudes extensivas e intensivas

Artículo principal: Propiedades intensivas y extensivas

Una magnitud extensiva es una magnitud que depende de la cantidad de sustancia que tiene el cuerpo o sistema. Las magnitudes extensivas son aditivas. Si consideramos un sistema físico formado por dos partes o subsistemas, el valor total de una magnitud extensiva resulta ser la suma de sus valores en cada una de las dos partes. Ejemplos: la masa y el volumen de un cuerpo o sistema, la energía de un sistema termodinámico, etc.

Una magnitud intensiva es aquella cuyo valor no depende de la cantidad de materia del sistema. Las magnitudes intensivas tienen el mismo valor para un sistema que para cada una de sus partes consideradas como subsistemas. Ejemplos: la densidad, la temperatura y la presión de un sistema termodinámico en equilibrio.

En general, el cociente entre dos magnitudes extensivas da como resultado una magnitud intensiva. Ejemplo: masa dividida por volumen representa densidad.

Magnitudes objetivas y no objetivas

Una magnitud se dice objetiva si las medidas de dicha magnitud por observadores diferentes pueden relacionarse de manera sistemática. En el contexto de la mecánica newtoniana se restringe el tipo de observador, y se considera que una magnitud es objetiva si se pueden relacionar sistemáticamente las medidas de dos observadores cuyo movimiento relativo en un instante dado es un movimiento de sólido rígido. Existen buenos argumentos para sostener que una ley física adecuada debe estar formulada en términos de magnitudes físicas objetivas. En el contexto de la teoría de la relatividad la objetividad física se amplia al concepto de covariancia de Lorentz (en relatividad especial) y covariancia general (en relatividad general).

espero que te aya ayudado y si es asi ponme corona bby

Preguntas similares