Jorge ha comprado una calculadora con los 2/7 del dinero que teni
a, y un diccionario con
los 2/3 de lo que le quedaba, si le han sobrado 25
€
, ¿Cuanto tenía al principio?
Respuestas
Respuesta dada por:
8
x=dinero que tenía al principio.
Precio de la calculadora=2x/7
Después de comprar la calculadora le quedó=x-(2x/7)=(7x-2x)/7=5x/7
Precio del diccionario= (2/3).(5x/7)=10x/21
Le sobró 25€.
Planteamos la siguiente ecuación:
x=2x/7+10x/21+25
m.c.m=21
21x=6x+10x+525
21x-6x-10x=525
5x=525
x=525/5=105
Sol: Al principio tenía 105 €.
La calculadora le costó: (2 x 105 €/7)=30 €
El diccionario le costó: (10 x 105 € /21)=50 €
Precio de la calculadora=2x/7
Después de comprar la calculadora le quedó=x-(2x/7)=(7x-2x)/7=5x/7
Precio del diccionario= (2/3).(5x/7)=10x/21
Le sobró 25€.
Planteamos la siguiente ecuación:
x=2x/7+10x/21+25
m.c.m=21
21x=6x+10x+525
21x-6x-10x=525
5x=525
x=525/5=105
Sol: Al principio tenía 105 €.
La calculadora le costó: (2 x 105 €/7)=30 €
El diccionario le costó: (10 x 105 € /21)=50 €
Respuesta dada por:
10
Respuesta: 525 €
Explicación paso a paso:
Compro una calculadora con 2/7 entonces le quedan 5/7.
Y un diccionario con 2/3 entonces queda así la operación:
(5/7) • (2/3) = 10/21
Y le sumamos el 2/7 del principio que fue lo que gastó
10/21 + 2/7 = 21/21
Y multiplicamos por los 25 sobrantes
25 • 21 = 525€
Preguntas similares
hace 6 años
hace 6 años
hace 9 años
hace 9 años
hace 9 años