sin desintegrar los equipos completa la siguiente tabla resolviendo los ejercicios de manera individual
lenguaja ordinario interpretación lenguaje algebraico tair
Respuestas
Respuesta:
1. ¿ÁLGEBRA EN EDUCACIÓN PRIMARIA?
En los Principios y Estándares para las Matemáticas Escolares del National Council
of Teachers of Mathematics (NCTM, 2000) se propone el Álgebra como uno de los
cinco bloques de contenido, junto con Números y Operaciones, Geometría, Medida,
Análisis de datos y Probabilidad, con la particularidad de que este bloque se debe
desarrollar, no sólo en los niveles de enseñanza secundaria, sino incluso desde
Preescolar.
Ciertamente no se trata de impartir un "curso de álgebra" a los alumnos de
educación infantil y primaria, sino de desarrollar el pensamiento algebraico a lo largo
del período que se inicia en la educación infantil hasta el bachillerato (grados K-12). En
el “álgebra escolar” se incluye el estudio de los patrones (numéricos, geométricos y de
cualquier otro tipo), las funciones, y la capacidad de analizar situaciones con la ayuda
de símbolos.
El concepto de función es una de las principales ideas de las matemáticas. Por ello
se considera que es necesario, y posible, iniciar su utilización y estudio en el tercer ciclo
de primaria, formando parte de la nueva visión del razonamiento algebraico, en lugar de
retrasarla a los niveles de secundaria. Pero el estudio de las funciones deberá centrarse
en indagar relaciones en contextos significativos para los alumnos y usando diversos
métodos de representación para analizar dichas relaciones. Se debe descartar el énfasis
en notaciones, terminologías como rango y dominio, y graficaciones sin ningún
propósito.
El razonamiento algebraico implica representar, generalizar y formalizar patrones y
regularidades en cualquier aspecto de las matemáticas. A medida que se desarrolla este
razonamiento, se va progresando en el uso del lenguaje y el simbolismo necesario para
apoyar y comunicar el pensamiento algebraico, especialmente las ecuaciones, las
variables y las funciones. Este tipo de razonamiento está en el corazón de las
matemáticas concebida como la ciencia de los patrones y el orden, ya que es difícil
encontrar un área de las matemáticas en la que formalizar y generalizar no sea central.
En consecuencia, los maestros en formación tienen que construir esta visión del
papel central de las ideas algebraicas en la actividad matemática, y sobre cómo
desarrollar el razonamiento algebraico a lo largo de los distintos niveles. Esto nos ha
llevado a tenerlo en cuenta en la formación de los maestros y a reflexionar sobre las
razones de esta elección, así como sobre la orientación y justificación de dicho Estándar
del NCTM.
Como hemos visto en los problemas incluidos en la sección A de
Contextualización Profesional, en los libros de texto usados en primaria se proponen
actividades que podemos calificar de algebraicas (uso de símbolos para designar
objetos, ecuaciones, fórmulas y patrones). Incluso encontramos elementos teóricos que
suponen el inicio de una reflexión sobre la estructura algebraica de los conjuntos y
operaciones con números. Tal es el caso de los enunciados generales de las propiedades
conmutativa, asociativa y distributiva de las operaciones aritméticas y su aplicación en
la solución de problemas
Explicación paso a paso:
Respuesta:
Explicación pEn los Principios y Estándares para las Matemáticas Escolares del National Council
of Teachers of Mathematics (NCTM, 2000) se propone el Álgebra como uno de los
cinco bloques de contenido, junto con Números y Operaciones, Geometría, Medida,
Análisis de datos y Probabilidad, con la particularidad de que este bloque se debe
desarrollar, no sólo en los niveles de enseñanza secundaria, sino incluso desde
Preescolar.
Ciertamente no se trata de impartir un "curso de álgebra" a los alumnos de
educación infantil y primaria, sino de desarrollar el pensamiento algebraico a lo largo
del período que se inicia en la educación infantil hasta el bachillerato (grados K-12). En
el “álgebra escolar” se incluye el estudio de los patrones (numéricos, geométricos y de
cualquier otro tipo), las funciones, y la capacidad de analizar situaciones con la ayuda
de símbolos.
El concepto de función es una de las principales ideas de las matemáticas. Por ello
se considera que es necesario, y posible, iniciar su utilización y estudio en el tercer ciclo
de primaria, formando parte de la nueva visión del razonamiento algebraico, en lugar de
retrasarla a los niveles de secundaria. Pero el estudio de las funciones deberá centrarse
en indagar relaciones en contextos significativos para los alumnos y usando diversos
métodos de representación para analizar dichas relaciones. Se debe descartar el énfasis
en notaciones, terminologías como rango y dominio, y graficaciones sin ningún
propósito.
El razonamiento algebraico implica representar, generalizar y formalizar patrones y
regularidades en cualquier aspecto de las matemáticas. A medida que se desarrolla este
razonamiento, se va progresando en el uso del lenguaje y el simbolismo necesario para
apoyar y comunicar el pensamiento algebraico, especialmente las ecuaciones, las
variables y las funciones. Este tipo de razonamiento está en el corazón de las
matemáticas concebida como la ciencia de los patrones y el orden, ya que es difícil
encontrar un área de las matemáticas en la que formalizar y generalizar no sea central.
En consecuencia, los maestros en formación tienen que construir esta visión del
papel central de las ideas algebraicas en la actividad matemática, y sobre cómo
desarrollar el razonamiento algebraico a lo largo de los distintos niveles. Esto nos ha
llevado a tenerlo en cuenta en la formación de los maestros y a reflexionar sobre las
razones de esta elección, así como sobre la orientación y justificación de dicho Estándar
del NCTM.
Como hemos visto en los problemas incluidos en la sección A de
Contextualización Profesional, en los libros de texto usados en primaria se proponen
actividades que podemos calificar de algebraicas (uso de símbolos para designar
objetos, ecuaciones, fórmulas y patrones). Incluso encontramos elementos teóricos que
suponen el inicio de una reflexión sobre la estructura algebraica de los conjuntos y
operaciones con números. Tal es el caso de los enunciados generales de las propiedades
conmutativa, asociativa y distributiva de las operaciones aritméticas y su aplicación en
la solución de problemasaso a paso: