• Asignatura: Matemáticas
  • Autor: jefervalbuena2
  • hace 6 años

Porfis ayudemen doy una corona ​

Adjuntos:

nena72563: La letra d
jefervalbuena2: son todas :v
LoveCristian1537: =_=

Respuestas

Respuesta dada por: alexsan2015
0

Respuesta:

a)x=\frac{3\pi }{4}+\pi n,\:x=\frac{\pi }{4}+\pi nx=

4

+πn,x=

4

π

+πn

Explicación paso a paso:

\frac{\tan (x)}{\cot (x)}-1=0

cot(x)

tan(x)

−1=0

\frac{\tan (x)-\cot (x)}{\cot (x)}=0

cot(x)

tan(x)−cot(x)

=0

\frac{f(x)}{g(x)}=0\quad \Rightarrow \quad f(x)=0

g(x)

f(x)

=0⇒f(x)=0

\tan (x)-\cot (x)=0tan(x)−cot(x)=0

-\frac{\cos (x)}{\sin (x)}+\frac{\sin (x)}{\cos (x)}=0−

sin(x)

cos(x)

+

cos(x)

sin(x)

=0

\frac{-\cos ^2(x)+\sin ^2(x)}{\cos (x)\sin (x)}=0

cos(x)sin(x)

−cos

2

(x)+sin

2

(x)

=0

-\cos ^2(x)+\sin ^2(x)=0−cos

2

(x)+sin

2

(x)=0

(\sin (x)+\cos (x))(\sin (x)-\cos (x))=0(sin(x)+cos(x))(sin(x)−cos(x))=0

\sin (x)+\cos (x)=0\quad \mathrm{o}\quad \sin (x)-\cos (x)=0sin(x)+cos(x)=0osin(x)−cos(x)=0

x=\frac{3\pi }{4}+\pi n,\:x=\frac{\pi }{4}+\pi nx=

4

+πn,x=

4

π

+πn

b)\frac{senx+cosx}{senx}=1

senx

senx+cosx

=1

\frac{\sin (x)+\cos (x)}{\sin (x)}-1=0

sin(x)

sin(x)+cos(x)

−1=0

\frac{\cos (x)}{\sin (x)}=0

sin(x)

cos(x)

=0

\frac{f(x)}{g(x)}=0\quad \Rightarrow \quad f(x)=0

g(x)

f(x)

=0⇒f(x)=0

\cos (x)=0cos(x)=0

x=\frac{\pi }{2}+2\pi n,\:x=\frac{3\pi }{2}+2\pi nx=

2

π

+2πn,x=

2

+2πn

Preguntas similares