Un pilar de un puente sobre el rio Ebro tiene bajo tierra 2/7 de su longitud, 2/5 del resto sumergido en agua, y la parte emergente mide 6 metros. Halla la longitud del pilar.
P.S.: ES POR ECUACIONES DE PRIMER O SEGUNDO GRADO
Respuestas
Respuesta dada por:
8
A la medida de la longitud del pilar del puente le llamo "x"
La suma de los 3 tramos del pilar, el que está bajo tierra, el que está sumergido y el que está sobre el agua hacen la medida total del pilar, es decir "x"
Por tanto planteo la ecuación: la suma de todos los tramos = x
![\frac{2x}{7}+ \frac{2x}{5}+6=x \frac{2x}{7}+ \frac{2x}{5}+6=x](https://tex.z-dn.net/?f=+%5Cfrac%7B2x%7D%7B7%7D%2B++%5Cfrac%7B2x%7D%7B5%7D%2B6%3Dx+)
En primer lugar debo buscar operar para quitar denominadores
![\frac{5*(2x)+7*(2x)}{35} + \frac{6*35}{35} = \frac{35x}{35} \frac{5*(2x)+7*(2x)}{35} + \frac{6*35}{35} = \frac{35x}{35}](https://tex.z-dn.net/?f=+%5Cfrac%7B5%2A%282x%29%2B7%2A%282x%29%7D%7B35%7D+%2B+%5Cfrac%7B6%2A35%7D%7B35%7D+%3D+%5Cfrac%7B35x%7D%7B35%7D+)
10x+14x+210=35x
35x-24x = 210
11x = 210
x = 210÷11
x = 19,09 m.
Respuesta: la longitud del pilar es de 19,09 m
La suma de los 3 tramos del pilar, el que está bajo tierra, el que está sumergido y el que está sobre el agua hacen la medida total del pilar, es decir "x"
Por tanto planteo la ecuación: la suma de todos los tramos = x
En primer lugar debo buscar operar para quitar denominadores
10x+14x+210=35x
35x-24x = 210
11x = 210
x = 210÷11
x = 19,09 m.
Respuesta: la longitud del pilar es de 19,09 m
Preguntas similares
hace 7 años
hace 7 años
hace 7 años
hace 10 años
hace 10 años