En el siguiente gráfico se muestra un puente construido por una municipalidad sobre una estructura con formas parabólicas congruentes que fueron evaluadas a su resistencia sísmica. El Punto (6;0) es de tangencia y la ecuación de la parábola de la izquierda es X al cuadrado = -4y ¿Cual es la ecuación de la parábola de la derecha?

Respuestas

Respuesta dada por: linolugo2006
11

La ecuación canónica de la parábola de la derecha es  (x  -  12)²  =  -12y.

Explicación paso a paso:

Aplicaremos la ecuación canónica de una Parábola de eje vertical:  

(x  -  h)²  =  ±4p(y  -  k)

donde:

(h, k)  =  (0, 0)    son las coordenadas del vértice

p     es la distancia, sobre el eje, desde el vértice al foco y a la directriz

Dado que la parábola de la izquierda tiene ecuación:

x²  =  -12y

Comparamos con la ecuación anterior y obtenemos:

h  =  0         k  =  0          

-4p  =  -12          ⇒         p  =  3  

Las parábolas en el puente son congruentes, lo cual implica que la distancia  p  en todas ellas es la misma.

Se nos indica que el punto  (6, 0)  es de tangencia. Nos ubicamos en el sistema de coordenadas y observamos que la parábola que toca el eje  x  en el punto  (6, 0)  es la del centro, y lo hace precisamente en el vértice.

Ya que el vértice de la parábola de la izquierda se encuentra en el (0, 0) y el de la parábola del centro se encuentra a 6 unidades a la derecha de éste sobre el eje  x;  entonces el vértice de la parábola de la derecha debe estar a  6  unidades del vértice de la parábola del centro; es decir, en el punto (12, 0).

La parábola de la derecha tiene vértice en el punto  (12, 0), abre hacia abajo y tiene distancia  p  =  3.

Sustituyendo en la ecuación canónica:

(x  -  12)²  =  -4(3)(y  -  0)          ⇒         (x  -  12)²  =  -12y

La ecuación canónica de la parábola de la derecha es  (x  -  12)²  =  -12y.

Tarea relacionada:

Parábola                               brainly.lat/tarea/13168895

Adjuntos:
Preguntas similares