Determinar la base mayor (en metros) de un trapecio rectangular de altura 6m; perímetro igual a 38m y el coseno del ángulo agudo es igual a 4/5
Respuestas
Respuesta dada por:
1
α=ángulo agudo del trapecio.
cos α=4/5
α=arc cos (4/5)=36,87º.
El trapecio rectángular, está formado por un rectángulo, del cual conocemos su altura 6 m, y de un triángulo rectángulo
Del triángulo rectángulo conocemos su altura (6 m) y el ángulo opuesto a la altura (36,87º).
La base mayor esta formada, por la base del rectángulo + base del triángulo.
base=cateto contiguo al ángulo 36,87º.
tg α= cateto opuesto/ cateto contiguo.
tg 36,87º=6 m/cateto contiguo.
cateto contiguo=6 m/ tg 36,87º≈8 m.
b₁=base del triángulo=8 m
sen α=cateto opuesto/ hipotenusa.
hipotenusa=cateto opuesto/ sen α.
hipotenusa=6 m/ sen 36,87º≈10 m.
Perímetro=suma de todos los lados.
b₂=base del rectángulo.
38 m=6 m+6m+10 m+8 m+2.b₁
2b₁=38 m-6 m-6 m-10 m-8 m
2b₁=8 m
b₁=8 m/2=4 m
Base mayor=b₁+b₂
Base mayor=8 m+4 m=12 m
Sol: 12 m.
cos α=4/5
α=arc cos (4/5)=36,87º.
El trapecio rectángular, está formado por un rectángulo, del cual conocemos su altura 6 m, y de un triángulo rectángulo
Del triángulo rectángulo conocemos su altura (6 m) y el ángulo opuesto a la altura (36,87º).
La base mayor esta formada, por la base del rectángulo + base del triángulo.
base=cateto contiguo al ángulo 36,87º.
tg α= cateto opuesto/ cateto contiguo.
tg 36,87º=6 m/cateto contiguo.
cateto contiguo=6 m/ tg 36,87º≈8 m.
b₁=base del triángulo=8 m
sen α=cateto opuesto/ hipotenusa.
hipotenusa=cateto opuesto/ sen α.
hipotenusa=6 m/ sen 36,87º≈10 m.
Perímetro=suma de todos los lados.
b₂=base del rectángulo.
38 m=6 m+6m+10 m+8 m+2.b₁
2b₁=38 m-6 m-6 m-10 m-8 m
2b₁=8 m
b₁=8 m/2=4 m
Base mayor=b₁+b₂
Base mayor=8 m+4 m=12 m
Sol: 12 m.
Preguntas similares
hace 7 años
hace 7 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años