• Asignatura: Matemáticas
  • Autor: lucindapinto85pcu76k
  • hace 7 años

ayuda por favor.........​

Adjuntos:

Infradeus10: ...
lucindapinto85pcu76k: ayúdame por favor siii
lucindapinto85pcu76k: eso es lo único que me falta para entregar mi tarea
Infradeus10: ok

Respuestas

Respuesta dada por: Infradeus10
1

Respuestas y pasos:

1)  \frac{\left[\left(-2\right)^2\right]^3\cdot \left[\left(-3\right)^4\right]^5\cdot \left(2^5\right)^3\cdot \left[\left(-2\right)^5\right]^2}{\left[\left(-2\right)^7\right]^2\cdot \left(\left(-3\right)^{10}\right)\cdot \left(-3\right)^9\cdot \left(2^4\right)}

Desarrollar por partes:

\left(\left(-2\right)^2\right)^3\left(\left(-3\right)^4\right)^5\cdot \left(2^5\right)^3\left(\left(-2\right)^5\right)^2=128^3\cdot \left(3^4\right)^5\cdot \left(2^5\right)^2

=\frac{128^3\left(3^4\right)^5\left(2^5\right)^2}{\left(-3\right)^{10}\left(-3\right)^9\cdot \:2^4\left(\left(-2\right)^7\right)^2}

\left(\left(-2\right)^7\right)^2\left(-3\right)^{10}\left(-3\right)^9\cdot \:2^4=-3^{19}\cdot \:2^4\cdot \left(2^7\right)^2

=\frac{128^3\left(3^4\right)^5\left(2^5\right)^2}{-3^{19}\cdot \:2^4\left(2^7\right)^2}

\mathrm{Aplicar\:las\:propiedades\:de\:las\:fracciones}:\quad \frac{a}{-b}=-\frac{a}{b}

=-\frac{128^3\left(3^4\right)^5\left(2^5\right)^2}{\left(2^7\right)^2\cdot \:3^{19}\cdot \:2^4}

\mathrm{Cancelar\:}\frac{128^3\cdot \left(3^4\right)^5\cdot \left(2^5\right)^2}{\left(2^7\right)^2\cdot \:3^{19}\cdot \:2^4}

=-\frac{2^{17}\cdot \:3\left(2^5\right)^2}{\left(2^7\right)^2}

\left(2^7\right)^2=2^{14}

=-\frac{2^{17}\cdot \:3\left(2^5\right)^2}{2^{14}}

\left(2^5\right)^2=2^{10}

=-\frac{2^{17}\cdot \:2^{10}\cdot \:3}{2^{14}}

2^{17}\cdot \:3\cdot \:2^{10}=2^{27}\cdot \:3

=-\frac{2^{27}\cdot \:3}{2^{14}}

\mathrm{Aplicar\:las\:leyes\:de\:los\:exponentes}:\quad \frac{x^a}{x^b}=x^{a-b}

\frac{2^{27}}{2^{14}}=2^{27-14}

=3\cdot \:2^{27-14}

\mathrm{Restar:}\:27-14=13

=-2^{13}\cdot \:3

=-8192\cdot \:3

=-24576

2) \left(\frac{2^2\cdot 3^5\cdot 2^{10}\cdot 3^4\cdot 5}{5\cdot 3^3\cdot 3^2\cdot 2^{11}}\right)^2=

\mathrm{Aplicar\:las\:leyes\:de\:los\:exponentes}:\quad \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c}

=\frac{\left(2^2\cdot \:3^5\cdot \:2^{10}\cdot \:3^4\cdot \:5\right)^2}{\left(5\cdot \:3^3\cdot \:3^2\cdot \:2^{11}\right)^2}

\left(2^2\cdot \:3^5\cdot \:2^{10}\cdot \:3^4\cdot \:5\right)^2=1.62496\:x\:10^{17}

=\frac{1.62496\:x 10^{17}}{\left(5\cdot \:3^3\cdot \:3^2\cdot \:2^{11}\right)^2}

\left(5\cdot \:3^3\cdot \:3^2\cdot \:2^{11}\right)^2=6191736422400

=\frac{1.62496\:x 10^{17}}{\left6191736422400}

Dividir

=26244

3) \left[\frac{3^5\cdot \left(-4\right)^2\cdot \left(-7\right)^3\cdot \left(-4\right)^5\cdot \left(-7\right)^7}{\left(-7\right)\cdot \left(-4\right)^6\cdot \left(-7\right)^9\cdot \left(3\right)}\right]^3

=\frac{\left(3^5\left(-4\right)^2\left(-7\right)^3\left(-4\right)^5\left(-7\right)^7\right)^3}{\left(-7\left(-4\right)^6\left(-7\right)^9\cdot \:3\right)^3}

\left(3^5\left(-4\right)^2\left(-7\right)^3\left(-4\right)^5\left(-7\right)^7\right)^3=7^{21}\cdot \:4^{15}\cdot \:2.37171\:x10^{18}

=\frac{7^{21}\cdot \:4^{15}\cdot \:2.37171\:x 10^{18}}{\left(-7\left(-4\right)^6\left(-7\right)^9\cdot \:3\right)^3}

\left(-7\left(-4\right)^6\left(-7\right)^9\cdot \:3\right)^3=-7^{27}\cdot \:4^{18}\cdot \:9261

=\frac{7^{21}\cdot \:4^{15}\cdot \:2.37171\:x10^{18}}{-7^{27}\cdot \:4^{18}\cdot \:9261}

=\frac{7^{21}\cdot \:4^{15}\cdot \:2.56096\:x 10^{14}}{7^{27}\cdot \:4^{18}}

=-\frac{2.56096\:x 10^{14}}{7^6\cdot \:4^3}

Dividir:

=-34012224

4) \left(\frac{\left(2\right)^4\cdot \left[\left(-5\right)^5\right]^4\cdot \left[\left(-10\right)^5\right]^6\cdot \left(-10\right)^5\cdot \left(-5\right)^8}{2^4\cdot \left[\left(-5\right)^5\right]^5\cdot \left(-10\right)^{35}}\right)^4

\frac{2^4\left(\left(-5\right)^5\right)^4\left(\left(-10\right)^5\right)^6\left(-10\right)^5\left(-5\right)^8}{2^4\left(\left(-5\right)^5\right)^5\left(-10\right)^{35}}=-5^3

=\left(-5^3\right)^4

\mathrm{Aplicar\:las\:leyes\:de\:los\:exponentes}:\quad \left(-a\right)^n=a^n,\:\mathrm{si\:}n\mathrm{\:es\:par}

=\left(5^3\right)^4

\mathrm{Aplicar\:las\:leyes\:de\:los\:exponentes}:\quad \left(a^b\right)^c=a^{bc}

=5^{3\cdot \:4}

=5^{12}

=244140625


lucindapinto85pcu76k: no entendí nada XD
Infradeus10: ¿pero te sirvio ?
lucindapinto85pcu76k: si claro
lucindapinto85pcu76k: el 3 y 4 no entiendo
Infradeus10: lo simplifique , es multiplicar con las leyes de exponentes, no me deja escribir mas de 4000-5000 palabras :(
lucindapinto85pcu76k: no importa gracias por tu ayuda
Preguntas similares