Factoriza por adición o sustracción:
a. 25^2 + 54 + 49^2 =
b. 121^6 − 108^3 + 4 =
c. 64^2 − 169 + 81^2 =
d. ^4 − 9^2 + 16 =
Respuestas
Respuesta:
Objetivos de Aprendizaje
· Factorizar trinomios que son cuadrados perfectos.
· Factorizar binomios en la forma de diferencia de cuadrados.
Introducción
Una de las claves para factorizar es encontrar patrones entre el trinomio y los factores del trinomio. Aprender a reconocer algunos tipos de polinomios comunes te hará más fácil factorizarlos. El conocimiento de los patrones característicos de los productos especiales — los trinomios que se forman a partir de elevar al cuadrado binomios — provee un atajo para encontrar sus factores.
Cuadrados Perfectos
Los cuadrados perfectos son números que son el resultado de la multiplicación de un número entero con sí mismo o elevado al cuadrado. Por ejemplo 1, 4, 9, 16, 25, 36, 49, 64, 81, y 100 son cuadrados perfectos — provienen de elevar al cuadrado cada número del 1 al 10. Observa que estos cuadrados perfectos también provienen de elevar al cuadrado los números negativos del −1 al −10, como (−1)( −1) = 1, (−2)( −2) = 4, (−3)( −3) = 9, etc.
Un trinomio cuadrado perfecto es un trinomio que resulta de la multiplicación de un binomio por sí mismo o elevado al cuadrado. Por ejemplo, (x + 3)2 = (x + 3)(x + 3) = x2 + 6x + 9. El trinomio x2 + 6x + 9 es un trinomio cuadrado perfecto. Vamos a factorizar este trinomio usando los métodos que ya conocemos.
Ejemplo
Problema
Factorizar x2 + 6x + 9.
x2 + 3x + 3x + 9
Reescribe 6x como 3x + 3x, como 3 • 3 = 9, el último término, y 3 + 3 = 6, el término central.
(x2 + 3x) + (3x + 9)
Agrupa pares de términos.
x(x + 3) + 3(x + 3)
Saca el factor x del primer par, y el factor 3 del segundo par.
(x + 3)(x + 3)
o
(x + 3)2
Saca el factor x + 3.
(x + 3)(x + 3) también puede escribirse como (x + 3)2.
Respuesta
(x + 3)(x + 3) o (x + 3)2
Observa que en el trinomio x2 + 6x + 9, los términos a y c son cuadrados perfectos, como x2 = x • x, y 9 = 3 • 3. También el término central es dos veces el producto de los términos x y 3, 2(3)x = 6x.
Ahora veamos un ejemplo un poco distinto. El ejemplo anterior muestra cómo (x + 3)2 = x2 + 6x + 9. ¿A qué es igual (x – 3)2? Aplicando lo que sabes sobre multiplicación de binomios, encuentras lo siguiente.
(x – 3)2
(x – 3)(x – 3)
x2 – 3x – 3x + 9
x2 – 6x + 9
Observa: ¡(x + 3)2 = x2 + 6x + 9, y (x – 3)2 = x2 – 6x + 9! Aquí 9 puede escribirse como (−3)2, entonces el término centra es 2(−3)x = −6x. Entonces cuando el signo del término central es negativo, el trinomio puede factorizarse como (a – b)2.
Intentemos con otro ejemplo: 9x2 – 24x + 16. Observa que 9x2 es un cuadrado perfecto, porque(3x)2 = 9x2 y que 16 es un cuadrado perfecto, porque 42 = 16. Sin embargo, el término central, –24x es negativo, entonces intenta 16 = (−4)2. En este caso, el término central es 2(3x)( −4) = −24x. Por lo que el trinomio 9x2 – 24x + 16 es un cuadrado perfecto y se factoriza como (3x – 4)2.
También puedes continuar factorizando usando agrupamiento, como se muestra abajo.