1. Lee y analiza el siguiente planteamiento: En una ciudad cercana al Pacífico, la tasa de crecimiento de la cantidad de lluvias por año es: f(t)=e^t-3t , donde t está dada en años. Además, el número de sismos moderados en esa ciudad está dado por: f(t)=(t 1)(1 t^2) con t en años. 2. Responde el siguiente cuestionamiento: a) ¿Cuántas lluvias habrá entre t=3 y t=7? b) ¿Cuál es la velocidad instantánea del número de terremotos con respecto al tiempo cuándo t=3? 3. Identifica información relacionada con las lluvias o con los sismos y elabora un breve reporte donde que integre los siguientes elementos: a) Variables. b) Frecuencia de ocurrencia. c) En al menos 5 renglones, incluye una conclusión respecto a su relación con el teorema fundamental del cálculo, con las derivadas o antiderivadas.
Respuestas
Respuesta dada por:
0
Respuesta:
Me aburre leer
Explicación:
Pero esperate aurita te ayudo
Respuesta dada por:
0
Respuesta:
Explicación:
a) ¿Cuántas lluvias habrá entre t=3 y t=7? f ´(t)=et-3t
∫▒f´(t)=∫▒e^2 dt-∫▒3 tdt
∫f ´(t)=e^2 (3t^2)/2
T=3
∫▒f´(3)=e^3 (3(〖3)〗^2)/2
∫▒f´(3)=6,585
T= 7
∫▒f´(7)=e^3 (3(〖7)〗^2)/2
∫▒f´(7)=1023,13
f(t)= f(3)-f(7)= 1023-6,58= 1016,54 mm
b) ¿Cuál es la velocidad instantánea del número de terremotos con respecto al tiempo cuando t=3? g ´(t)=t+1)(1+t^2)
g ´(t)=3t^2+t2+1
g ´(t)=3〖(3)〗^2+2 (3)+1
g'(t)= 3(9) + 6 +1
g ´(t)=34 m/s
Preguntas similares
hace 5 años
hace 5 años
hace 5 años
hace 8 años
hace 8 años
hace 9 años
hace 9 años