Two circles have diameters x and y. Show that a circle with diameter z = √x² + √y² has the same area as the two circles together.
Respuestas
Respuesta dada por:
2
Explanation step by step:
Area = πr²
Radius = Diameter / 2
Circle with diameter x
Radius = x / 2
Area Cx = π(x/2)²
Area Cx = πx²/4
Circle with diameter y
Radius = y / 2
Area Cy = π(y/2)²
Area Cy = πy²/4
Area of the two circles, x and y
Area Cxy = Area Cx + Area Cy
Area Cxy = πx²/4 + πy²/4
Area Cxy = (πx² + πy²)/4
Area Cxy = π(x² + y²)/4
Circle with diameter z
Radius = (√x² + √y²) / 2
Area Cz = π((√x² + √y²) / 2)²
(√x²)² = (x^(2/2))² = x^(4/2) = x²
Area Cz = π(x² + y²)/4
Proof
Area Cxy = Area Cz
π(x² + y²)/4 = π(x² + y²)/4
intertopo25:
Thank you so much, you we're very clear
Respuesta dada por:
0
Respuesta:
sorry not speak inglish
Explicación paso a paso:
sorry boy ylgu
Preguntas similares
hace 5 años
hace 7 años
hace 7 años