Respuestas
Respuesta:
Expresar cada polinomio de la forma x²ⁿ + bxⁿ + c =?
Factorizarlos de la forma : (xⁿ + p )*( xⁿ +q) =?
SOLUCIÓN :
a) x² +2x - 35 = x²⁽¹⁾ + 2x⁽¹⁾ -35 = ( x +7 )*( x - 5) .
b) x⁴ + 4x² - 5 = x²⁽²⁾ + 4x⁽²⁾ - 5 = ( x² + 5 )*( x² - 1) .
c) x⁶ + 6x³ + 9 = x²⁽³⁾ + 6x⁽³⁾ +9 = ( x³ + 3) *( x³ +3)
d) x⁸ + 13x⁴ + 42 = x⁴⁽²⁾ + 13x⁴⁽¹⁾ + 42 = ( x⁴ + 7 )* ( x⁴ +6)
e) x² - 14x + 33 = x²⁽¹⁾ -14x⁽¹⁾ +33 = ( x - 11) *( x - 3 )
f) x² - 10x + 9 = x²⁽¹⁾ -10x⁽¹⁾ + 9 = ( x -9) *( x - 1 )
g) x⁴ + 7x² +10 = x²⁽²⁾ + 7x⁽²⁾ + 10 = ( x² + 5)*( x² + 2 )
h) x⁴ - x² -12 = x²⁽²⁾ - x⁽²⁾ -12 = ( x² - 4)*( x² +3)
i) x⁶ +2x³ -15 = x²⁽³⁾ + 2x⁽³⁾ -15 = ( x³ + 5) *( x³ - 3)
j) x⁴ + 10x² +24 = x²⁽²⁾ + 10x⁽²⁾ + 24 = ( x² + 6)*(x² +4)
k) x⁸ - 10x⁴ +24 = x²⁽⁴⁾ -10x⁽⁴⁾ + 24 = ( x⁴ - 12 )*( x⁴ + 2 )
l) x⁴ + 26x² +144 = x²⁽²⁾ + 26x⁽²⁾ + 144 = ( x² + 18 )*( x² + 8 )
m) x¹⁰ - x⁵y⁵ -20y¹⁰ = x²⁽⁵⁾ - x⁽⁵⁾y⁵ -20y¹⁰ = ( x⁵ - 5y⁵)*( x⁵ + 4y⁵)
n) x⁶ - 6x³y³ -7y⁶ = x²⁽³⁾ -6x⁽³⁾y³ -7y⁶ = ( x³ - 7y³)*( x³ + y³)
Explicación: