Encontrar la recta tangente de la función f (x)= 19

Respuestas

Respuesta dada por: yulispaolahoyoschave
0

Respuesta:

La bisectriz del primer cuadrante tiene de ecuación y = x, por tanto m = 1.

Derivamos la ecuación de la parábola, pues sabemos que la derivada nos indica la pendiente

f'(x) =2x

e igualamos a 1 y despejamos para calcular el valor de x en el que ocurre esto

\displaystyle 2x=1 \hspace{2cm} x=\frac{1}{2}

Evaluamos la función original en este punto \displaystyle x=\frac{1}{2}

\displaystyle f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2=\frac{1}{4}

Entonces

\displaystyle \text{Punto} \hspace{.5cm} \longrightarrow \hspace{.5cm}\left(\frac{1}{2},\frac{1}{4}\right)

 

2Recta tangente

 

\displaystyle \text{Punto} \hspace{.5cm} \longrightarrow \hspace{.5cm}\left(\frac{1}{2},\frac{1}{4}\right)

\text{Pendiente} \hspace{.5cm} \longrightarrow \hspace{.5cm} m=1

\displaystyle \text{Ecuaci\'on de la recta} \hspace{.5cm} \longrightarrow \hspace{.5cm} y-\frac{1}{4}=x-\frac{1}{2} \hspace{.5cm} y=x-\frac{1}{4}

 

recta tangente representación gráfica  

 

3Recta normal

 

\displaystyle \text{Punto} \hspace{.5cm} \longrightarrow \hspace{.5cm}\left(\frac{1}{2},\frac{1}{4}\right)

\displaystyle \text{Pendiente} \hspace{.5cm} \longrightarrow \hspace{.5cm} m_n=-\frac{1}{m_t}=-\frac{1}{1}=-1

\displaystyle \text{Ecuaci\'on de la recta} \hspace{.5cm} \longrightarrow \hspace{.5cm} y-\frac{1}{4}=-\left(x-\frac{1}{2}\right) \hspace{.5cm} y=-x+\frac{1}{4}

Preguntas similares