• Asignatura: Física
  • Autor: queincognito
  • hace 7 años

Suponga que a Ud. y a un compañero de curso su profesor de EFI le pidió traer una gran caja desde el fondo del gimnasio. Si Ud. ejerce 40 [N], su compañero 30 [N] y la fuerza de roce es de 40 [N].
a) Realice un DCL de la situación y determine el valor de la fuerza neta sobre la caja.
b) Si su compañero se cansa y ud realiza la misma fuerza de antes y la fuerza de roce se mantiene. Realice un DCL de la situación y calcule la fuerza neta sobre la caja.
c) La caja en la situación (b) ¿puede moverse? Fundamente su respuesta. AYUDA PORFA LO TENGO QUE ENTREGAR

Respuestas

Respuesta dada por: juandieo3023
0

Respuesta:

4. Dos bloques están en contacto sobre una mesa como muestra la figura. Si se le aplica una fuerza

constante: 1) horizontal y 2) formando un ángulo de 30° con la horizontal, despreciando el

rozamiento calcular:

a) La aceleración que adquiere el sistema

cada caso.

b) La fuerza de interacción entre ambos cuerpos.

DATOS: F= 20 N; m1 = 2 kg y m2 = 3 kg

a) Cálculo de la aceleración

Para calcular la aceleración del sistema, trataremos a los dos cuerpos como uno solo, cuya masa

total es = ଵ + ଶ. Para cada caso plantearemos los ejes coordenados y dibujaremos el

diagrama de cuerpo libre.

Teniendo en cuenta las fuerzas que actúan sobre cada eje, podemos plantear:

Caso 1: Fuerza aplicada horizontal:

Teniendo en cuenta que el cuerpo no se

∑ ௬ = − = 0 (1)

∑ ௫ = = (2)

De la ecuación para x obtenemos:

ி௠

= ⇒ =

ி ௠భା௠మ =

ଶ଴

ଶ௄௚ାଷ

Caso 2: Fuerza aplicada con ángulo de 30°

∑ ௬ = − − 30 = 0

∑ ௫ = 30 = (4)

De la ecuación para x obtenemos:

ி௖௢௦ଷ଴ ௠

= ⇒ =

ி௖௢௦ଷ଴ ௠భା௠మ =

ଶ଴ே௖௢௦ଷ଴

ଶ௄௚ାଷ௞௚

Notar que este es un caso donde la normal no es igual al peso.

b) Cálculo de la fuerza de interacción entre los cuerpos

Veamos ahora lo que sucede sobre uno de los cuerpos que compone el sistema, en particular, el

cuerpo 1:

Dos bloques están en contacto sobre una mesa como muestra la figura. Si se le aplica una fuerza

constante: 1) horizontal y 2) formando un ángulo de 30° con la horizontal, despreciando el

a) La aceleración que adquiere el sistema en

b) La fuerza de interacción entre ambos cuerpos.

= 3 kg

Para calcular la aceleración del sistema, trataremos a los dos cuerpos como uno solo, cuya masa

a caso plantearemos los ejes coordenados y dibujaremos el

Teniendo en cuenta las fuerzas que actúan sobre cada eje, podemos plantear:

Teniendo en cuenta que el cuerpo no se acelera en el eje y, pero si en el eje x, = 4 ௠

௦మ

con ángulo de 30° con la horizontal:

(3)

ଷ଴

௞௚

⇒ ≅ 3,46 ௠

௦మ

caso donde la normal no es igual al peso.

Cálculo de la fuerza de interacción entre los cuerpos

sobre uno de los cuerpos que compone el sistema, en particular, el

Dos bloques están en contacto sobre una mesa como muestra la figura. Si se le aplica una fuerza

constante: 1) horizontal y 2) formando un ángulo de 30° con la horizontal, despreciando el

Para calcular la aceleración del sistema, trataremos a los dos cuerpos como uno solo, cuya masa

a caso plantearemos los ejes coordenados y dibujaremos el  

El cuerpo 2 ejerce una fuerza ଶଵ sobre el cuerpo 1, y el cuerpo 1 ejerce una fuerza

cuerpo 2; ambas son iguales en módulo pero tienen sentidos contrarios

entre ambos cuerpos: son un par acción

solo sistema no tomamos en cuenta estas fuerzas, porque se cancelan una con la otra.

Entonces, planteemos las fuerzas que actúan sobre el cu

Caso 1:

Sobre el eje x (horizontal):

∑ ௫ = − ଶଵ = (5)

Sobre el eje y sigue valiendo la ecuación (1). La aceleración de cada cuerpo es igual a la aceleración

del sistema, que calculamos en la primera parte del problema. Reemplazando por los valores que ya

conocemos,

20 − ଶଵ = 2 4

20 − 2 4 ௠

௦మ = ଶଵ ⇒ ଶଵ = 12

Finalmente,

−ଶଵ = ଵଶ = 12 ̌

Comprobemos que en el segundo cuerpo efectivamente la fuerza

la sumatoria de fuerzas en el eje x para el cuerpo 2. Tengamos en mente que la aceleración es la

misma para los dos cuerpos porque se mantienen en contacto:

෍௫ = ଵଶ = = 3 4

ଶ = 12

Caso 2:

Sobre el eje x (horizontal):

∑ ௫ = 30 − ଶଵ = (5)

Nuevamente, sobre el eje y sigue valiendo la ecuación (3).

2030 − ଶଵ = 2 3.64

2030 − 2 3.46 ௠

௦మ = ଶଵ ⇒

Entonces,

ଶଵ = −ଵଶ = 10.4 ̌

sobre el cuerpo 1, y el cuerpo 1 ejerce una fuerza

cuerpo 2; ambas son iguales en módulo pero tienen sentidos contrarios, y surgen de la interacción

: son un par acción-reacción. Cuando consideramos a ambos cuerpos como un

solo sistema no tomamos en cuenta estas fuerzas, porque se cancelan una con la otra.

Entonces, planteemos las fuerzas que actúan sobre el cuerpo 1.

sigue valiendo la ecuación (1). La aceleración de cada cuerpo es igual a la aceleración

del sistema, que calculamos en la primera parte del problema. Reemplazando por los valores que ya

12 (en módulo)

Explicación:


queincognito: disculpa que son todas esas figuras ?
queincognito: no entendi las figuras :/ ayuda porfa lo tengo que mandar y la verdad estoy super estresado
Preguntas similares