un mortero dispara sus proyectiles con una velocidad inicial de 800 km/h, ¿qué inclinación debe tener el mortero para que alcance un objetivo ubicado a 4000 m de este?

Respuestas

Respuesta dada por: arkyta
20

El ángulo de elevación es de 26,30°

Procedimiento:

Se trata de un problema de tiro parabólico que consiste en una composición de movimientos en dos dimensiones: uno horizontal sin aceleración, y el otro vertical con aceleración constante hacia abajo, debido a la fuerza de gravedad. Ambos movimientos poseen velocidad inicial y son independientes uno del otro.

Para encontrar la posición del proyectil es esencial establecer un sistema de referencia. En donde la velocidad con que se lanza el proyectil formará un ángulo α con la horizontal, que nos permitirá determinar las componentes x e y recurriendo a las relaciones trigonométricas habituales.

Siendo para el eje y

\boxed {\bold  {  {V_{y}   =V \ . \ sen \ \theta}}}

Y para el eje x

\boxed {\bold  {  {V_{x}   =V_{}  \ . \ cos \ \theta}}}

Siendo las ecuaciones del movimiento parabólico

Para el eje y (MRUV)

\boxed {\bold  {  {V_{y}   =V_{0y} +a_{y}  \ . \ t }}}

\boxed {\bold  {    y ={y_{0}   +V_{0y}  \ . \ t + \frac{1}{2} \ . \ a_{y}  \ . \ t^{2}  }}}

\textsf{Donde  } \ \ \ \bold  a_{y} = -g

Para el eje x (MRU)

\boxed {\bold  {    x ={x_{0}   +V_{x}  \ . \ t   }}}

\textsf{Donde  } \ \ \ \bold  a_{x} = 0

Solución:  

Cálculo del ángulo de elevación del proyectil

\large \textsf{Convertimos la  } \bold  {V_{0} }\ \large \textsf{de km/h a m/s        }}

\large \textsf{Dividiendo el valor de la velocidad entre 3,6 }    }}

\boxed{ \bold{  \frac{ 800\ km/h                }{3,6}  = 222,22 \ m/s}}

La ecuación de alcance máximo de un proyectil está dada por:

\boxed {\bold  {  x_{max}  =\frac{( V _{0})^{2}  \ . \ sen (2 \theta)  }{ g  }         }}}

Donde

\bold  { V_{0}  \ \ \ \  \ \  \textsf{ Es la velocidad  inicial }   }}

\bold  { x_{max}   \ \ \ \    \textsf{Es el alcance m\'aximo del proyectil  }  }}

\bold  { g   \ \ \ \ \  \ \ \ \    \textsf{Es la gravedad  }     }}

\boxed {\bold  {  x_{max}  \ .  \ g \ ={( V _{0})^{2}  \ . \ sen (2  \theta)          }}}

\large \textsf{Reemplazamos y hallaremos el \'angulo  }  }       }}

\textsf{Quitamos las unidades para faciltaci\'on  }

\boxed {\bold  {  4000  \ .  \ 9,8 \ ={( 222,22)^{2}  \ . \ sen (2  \theta)          }}}

\boxed {\bold  {  39200  =49382 \ . \ sen (2  \theta)          }}}

\boxed {\bold  { 49382 \ . \ sen (2  \theta)   = 39200       }}}

\boxed {\bold  {  sen (2  \theta)   = \frac{39200}{ 49382 \   }        }}}

\boxed {\bold  {  sen (2  \theta)   = \frac{19600}{ 24961    }        }}}

\textsf{Aplicamos la inversa del seno  }

\boxed {\bold  {  sen (2  \theta)   = arcsen\left(\frac{19600}{ 24961 \right)   }        }}}

\boxed {\bold  { 2  \theta   = 52,54314349\°      }}}

\boxed {\bold  { \theta   =          \frac{   52,54314349\°        }{2}     }}}

\boxed {\bold  { \theta   =           26,27157174\°           }}}

\large\boxed {\bold  { \theta   =           26,30\°           }}}

\textsf{La funci\'on seno es positiva en el primer y en el segundo cuadrante  }

\large \textsf{Para encontrar la segunda soluci\'on:}    }}

\boxed {\bold  { 2  \theta   =180\° -  52,54314349\°      }}}

\boxed {\bold  { 2  \theta   =  127,4568565\°      }}}

\boxed {\bold  {  \theta   =         \frac{   127,4568565\°                  }{2}       }}}

\boxed {\bold  { \theta   =           63,72842825\°           }}}

\large\boxed {\bold  { \theta   =           63,73\°           }}}

Preguntas similares