Respuestas
Respuesta:
Solución:
aPara la serie de números x_{1}=2, x_{2}=3, x_{3}=6, x_{4}=8, x_{5}=11 con n=5=N tenemos los siguientes cálculos.
Para la desviación media primero necesitamos calcular el valor de la media.
Media
\displaystyle { \bar{x} = \frac{x_1+x_2+...+x_n}{n} }
\displaystyle { \bar{x} = \frac{2+3+6+8+11}{5} = 6 }
Luego, calculamos el valor de la desviación media.
Desviación media
\displaystyle{ D_{\bar{x}} = \frac{\mid x_1 - \bar{x} \mid + \mid x_2 - \bar{x} \mid +...+ \mid x_N - \bar{x} \mid}{N} }
\displaystyle{ D_{\bar{x}} = \frac{\mid 2 - 6 \mid + \mid 3 - 6 \mid +\mid 6 - 6 \mid + \mid 8-6 \mid + \mid 11-6 \mid}{5}= \frac{14}{5} = 2.8 }
Ahora, calculamos el valor de la varianza.
Varianza
\displaystyle{\sigma^2=\frac{(x_1-\bar{x})^2+(x_2-\bar{x})^2+...+(x_n-\bar{x})^2}{N} \qquad \mbox{\'o} \qquad \sigma^2=\frac{x_1^2+x_2^2+...+x_n^2}{N}-\bar{x}^2 }
\displaystyle{ \sigma^2=\frac{(2-6)^2+(3-6)^2+(6-6)^2+(8-6)^2+(11-6)^2}{5} = \frac{54}{5}= 10.8 }
Y finalmente, calculamos el valor de la desviación típica.
Desviación típica
\displaystyle{\sigma=\sqrt{\frac{(x_1-\bar{x})^2+(x_2-\bar{x})^2+...+(x_n-\bar{x})^2}{N}} }
\displaystyle{ \sigma = \sqrt{10.8} = 3.28 }
espero te ayude :)