1. Usa la propiedad fundamental para hallar la sucesión de razones iguales a. 2/4= 4/8= 8/16= b. 7/5= 14/10= 21/15= c. 15/30= 30/60= 60/120= d. 50/100= 100/200= 150/300 e. 1000/3500= 2000/7000=3000/10500 f. 20000/40000= 40000/80000=60000/120000
Respuestas
Respuesta:
Completa las siguientes tablas e indica, en cada caso, si los pares de va- lores son directamente proporcionales, inversamente proporcionales o no guardan ninguna relación de proporcionalidad: A 3 5 7 8 12 B 9 15 21 30 M 3 4 9 15 25 N 2 3 8 20 K 2 3 4 5 10 L 30 20 15 10 A 3 5 7 8 10 12 Proporcionalidad directa. B 9 15 21 24 30 36 M 3 4 9 15 21 25 No guardan proporción. N 2 3 8 14 20 24 Si M vale k, N vale k – 1. K 2 3 4 5 6 10 Proporcionalidad inversa. L 30 20 15 12 10 6Unidad 5. Proporcionalidad
2. SOLUCIONES A LOS EJERCICIOS 5 DE LA UNIDAD Pág. 2 RAZONES Y PROPORCIONES 3 Busca: 1 a) Tres pares de números cuya razón sea igual a . 2 b) Tres parejas de números que estén en la relación de tres a uno. c) Tres parejas de números que estén en razón de dos a cinco. Soluciones abiertas. Por ejemplo: a) 3 = 4 = 12 = … 6 8 24 b) 6 = 12 = 9 = … 2 4 3 c) 4 = 8 = 6 = … 10 20 15 4 Escribe cuatro proporciones con las siguientes razones: 4 2 10 14 6 6 7 15 21 21 4 = 10 6 = 12 2 = 6 10 = 14 6 15 21 42 7 21 15 21 5 Escribe tres proporciones con los valores de esta tabla: KILOS DE COSTE ALMENDRAS EN EUROS 1 9 2 18 5 45 ¿Qué relación de proporcionalidad liga ambas magnitudes? 1 = 2 1 = 5 2 = 5 9 18 9 45 18 45 Proporcionalidad directa. 6 Escribe tres proporciones con los valores de esta tabla: VELOCIDAD DE UN TREN (km/h) 50 100 150 TIEMPO QUE DURA EL VIAJE (h) 6 3 2Unidad 5. Proporcionalidad
3. SOLUCIONES A LOS EJERCICIOS 5 DE LA UNIDAD Pág. 3 ¿Qué relación liga ambas magnitudes? 50 = 3 50 = 2 100 = 2 100 6 150 6 150 3 Proporcionalidad inversa. 7 Completa las siguientes proporciones: a) 15 = 21 b) 6 = x 20 x 24 21 c) x = 40 d) 28 = 35 24 64 x 55 e) x = 53 f ) 17 = 68 72 212 x 372 g) 14 = 284 h) 24 = x 35 x x 54 i) 9 = x j ) x = 54 x 25 24 x a) x = 20 · 21 = 28 b) x = 6 · 21 = 21 15 24 4 c) x = 24 · 40 = 15 d) x = 28 · 55 = 44 64 35 e) x = 72 · 53 = 18 f ) x = 372 · 17 = 93 212 68 g) x = 35 · 284 = 710 h) x 2 = 1 296 → x = 36 14 i) x 2 = 225 → x = 15 j) x 2 = 24 · 54 = 1 296 → x = 36 8 Calcula la constante de proporcionalidad y, con ayuda de ella, completa esta tabla de valores directamente proporcionales: A 2 5 6 8 10 15 B 1,6 4 4,8 Constante de proporcionalidad = 0,8 A 2 5 6 8 10 15 B 1,6 4 4,8 6,4 8 12Unidad 5. Proporcionalidad
4. SOLUCIONES A LOS EJERCICIOS 5 DE LA UNIDAD Pág. 4PÁGINA 105 PROBLEMAS DE PROPORCIONALIDAD DIRECTA E INVERSA 9 Calcula mentalmente y contesta: a) Tres kilos de naranjas cuestan 2,4 €. ¿Cuánto cuestan dos kilos? b) Seis obreros descargan un camión en tres horas. ¿Cuánto tardarán cuatro obreros? c) 200 g de jamón cuestan 4 €. ¿Cuánto costarán 150 gramos? d) Un avión, en 3 horas, recorre 1 500 km. ¿Cuántos kilómetros recorrerá en 5 horas? e) Un camión cargado, a 60 km/h, recorre cierta distancia en 9 horas. ¿Cuán- to tiempo invertirá en el viaje de vuelta, descargado, a 90 km/h? a) 1,6 € b) 4 horas y media c) 3 € d) 2 500 km e) 6 horas11 Si cuatro entradas para el cine han costado 15,2 €, ¿cuánto costarán cinco entradas? 4 = 5 → x = 15,2 · 5 = 19 € 15,2 x 412 El dueño de un supermercado ha abonado 180 € por 15 cajas de ajos. ¿Cuánto deberá pagar por un nuevo pedido de 13 cajas de ajos? P. DIRECTA CAJAS COSTE 15 ——— 180 € 13 · 180 = 156 € x= 13 ——— x 15Unidad 5. Proporcionalidad
Explicación paso a paso: