A un cuerpo que lleva una velocidad de 30 m/snse le imprime una aceleracion costante de 0,1 m/S4
Respuestas
Respuesta:
Establecer el sistema de referencia, es decir, el origen y el eje a lo largo del cual tiene lugar el movimiento
El valor y signo de la aceleración
El valor y el signo de la velocidad inicial
La posición inicial del móvil
Escribir las ecuaciones del movimiento
A partir de los datos, despejar las incógnitas
Un cuerpo es lanzado desde el techo de un edificio de altura x0 con velocidad v0, determinar las ecuaciones del movimiento, la altura máxima y el tiempo que tarda el cuerpo en alcanzar el origen situado en el suelo.
En primer lugar, establecemos el origen y la dirección del movimiento, el eje X. Después, los valores de la posición inicial y los valores y signos de la velocidad inicial, y de la aceleración, tal como se indica en la figura. Resultando las siguientes ecuaciones del movimiento.
a
=
−
g
v
=
v
0
+
a
⋅
t
x
=
x
0
+
v
0
⋅
t
+
1
2
⋅
a
⋅
t
2
Cuando alcanza la altura máxima, la velocidad del móvil es cero. De la ecuación de la velocidad, se obtiene el tiempo que transcurre desde que se lanza hasta que llega a dicha posición. El tiempo transcurrido se sustituye en la ecuación de la posición, obteniéndose la máxima altura que alcanza el móvil medida desde el suelo.
t
=
v
0
g
x
=
x
0
+
1
2
v
2
0
g
El tiempo que tarda en llegar al suelo, se obtiene a partir de la ecuación de la posición, poniendo x=0, resolviendo una ecuación de segundo grado.
x
0
+
v
0
t
−
1
2
g
t
2
=
0
Nota: como podrá comprobar el lector, la solución del problema es independiente de la situación del origen. Si colocamos el origen en el punto de lanzamiento, la posición inicial x0 es cero, pero el suelo se encuentra en la posición -x0 respecto de dicho origen, resultando la misma ecuación. La altura máxima se calcula ahora desde el techo del edificio, no desde el origen.
Problema
Se lanza un cuerpo hacia arriba, en dirección vertical, con velocidad inicial de 98 m/s desde el techo de un edificio de 100 m de altura. Tomar g=9.8 m/s2. Hallar:
La máxima altura que alcanza el cuerpo medida desde el suelo
El tiempo que transcurre hasta que llega al suelo.
La velocidad al llegar al suelo
Primero se dibuja el eje X, se establece el origen O en el suelo y se dibujan los vectores velocidad inicial y aceleración de la gravedad.
Ecuaciones del movimiento
a=-9.8
v=98+(-9.8)t
x=100+98·t+½(-9.8)t2
Máxima altura que alcanza, v=0, t=10 s, x=590 m
Tiempo que tarda en llegar al suelo x=0, t=20.97 s v=-107.54 m/s
Explicación paso a paso: