Respuestas
Respuesta:
Todos conocemos la función factorial de un entero y su simpática expresión con forma de exclamación (n!) que básicamente consiste en multiplicar todos los enteros entre 1 y el número en cuestión. El cálculo de factoriales suele producir valores enteros bastante grandes. Así por ejemplo 5! = 1 × 2 × 3 × 4 × 5 = 120. Si calculamos 50! es ya un número de 65 cifras.
Es sabido que suceden cosas raras con el factorial de cero (0!) que resulta ser igual a 1, algo que va un poco contra la intuición pero que resulta bastante conveniente y adecuado, aunque no deja de ser una convención. Digamos que es especialmente conveniente cuando se trata de combinatoria (que es una de las ramas en que más se utilizan los factoriales) pues cuando aparece viene a significar –más o menos– que «sólo hay una forma de reordenar o combinar cero cosas».
¿Qué sucede cuando se calcula el factorial de un número no entero, por ejemplo 0,5? Eso está un poco fuera de la definición más habitual, y el resultado es digno de un sorprendente WTF:
Explicación paso a paso:
espero que te ayude mi respuesta corona plis