Hallar la solución general de la siguiente ecuación como una serie de potencial alrededor del punto x=0

2y" +xy´ + y =0

Respuestas

Respuesta dada por: CarlosMath
1
\displaystyle
2y''+xy'+y=0\\\\
y=\sum_{n=0}^{\infty}a_nx^n\\\\
y'=\sum_{n=1}^{\infty}a_nnx^{n-1}\\\\
y''=\sum_{n=2}^{\infty}a_nn(n-1)x^{n-2}

\text{Sustituimos}:\\\\
\displaystyle
2\sum_{n=2}^{\infty}a_nn(n-1)x^{n-2}+x\sum_{n=1}^{\infty}a_nnx^{n-1}+\sum_{n=0}^{\infty}a_nx^n=0\\\\\\
\sum_{n=2}^{\infty}2a_nn(n-1)x^{n-2}+\sum_{n=1}^{\infty}a_nnx^{n}+\sum_{n=0}^{\infty}a_nx^n=0\\\\\\
\text{Igualando potencias}:

\displaystyle
\sum_{n=0}^{\infty}2a_{n+2}(n+2)(n+1)x^{n}+\sum_{n=1}^{\infty}a_nnx^{n}+\sum_{n=0}^{\infty}a_nx^n=0\\\\\\
\text{Igualando sub \'indices}\\ \\
4a_2+a_0+\sum_{n=1}^{\infty}2a_{n+2}(n+2)(n+1)x^{n}+\sum_{n=1}^{\infty}a_nnx^{n}+\sum_{n=1}^{\infty}a_nx^n=0\\\\\\
4a_2+a_0+\sum_{n=1}^{\infty}\left[2a_{n+2}(n+2)(n+1)+a_n(n+1)\right]x^n=0

\displaystyle
\text{Comparando coeficientes:}\\\\
4a_2+a_0=0\to a_2=-\dfrac{a_0}{4}\\\\
2a_{n+2}(n+2)(n+1)+a_n(n+1)=0\;,\; \text{para }n\geq1\\\\
a_{n+2}=-\dfrac{a_n}{2(n+2)}\;,\;n\geq1


\displaystyle
\text{Probemos:}\\ \\
\text{Con }n=1:\;\; a_3=-\dfrac{a_1}{2(3)}\\\\
\text{Con }n=2:\;\; a_4=-\dfrac{a_2}{2(4)}=\dfrac{a_0}{2^3(4)}\\\\
\text{Con }n=3:\;\; a_5=-\dfrac{a_3}{2(5)}=-\dfrac{a_1}{2^2(3\cdot 5)}


\displaystyle
\text{Con }n=4:\;\; a_6=-\dfrac{a_4}{2(6)}=-\dfrac{a_0}{2^4(4\cdot6)}\\\\
\text{Con }n=5:\;\; a_7=-\dfrac{a_5}{2(7)}=\dfrac{a_1}{2^3(3\cdot5\cdot7)}\\\\
\vdots\\ \\
a_{2n-1}=\dfrac{(-1)^{n+1}a_1}{2^{n}(1\cdot3\cdot5\cdot7\cdots(2n+1))}\\\\
a_{2n-1}=\dfrac{(-1)^{n+1}a_1(2\cdot4\cdot6\cdots(2n))}{2^{n}(2n+1)!}


\displaystyle
\boxed{a_{2n-1}=\dfrac{(-1)^{n+1}n!}{(2n+1)!}a_1\;,\;n\geq 1}\\\\\\
a_{2n}=\dfrac{(-1)^n}{2^n(2\cdot4\cdot6\cdots(2n))}a_0\\\\
\boxed{a_{2n}=\dfrac{(-1)^{n}}{4^{n}n!}a_0\;,\; n\geq1}\\\\
y=\sum_{n=0}^{\infty}a_nx^n\\\\
y=\sum_{n=0}^{\infty}a_{2n}x^{2n}+\sum_{n=1}^{\infty}a_{2n-1}x^{2n-1}\\\\
\boxed{y=a_0\sum_{n=0}^{\infty}\dfrac{(-1)^{n}}{4^{n}n!}x^{2n}+a_1\sum_{n=1}^{\infty}\dfrac{(-1)^{n+1}n!}{(2n+1)!}x^{2n-1}}

nanapisco: muchas gracias
Preguntas similares