_
 \frac{ \cot^{2} (x) }{ \csc(x) - 1 }  =  \csc(x)  +  \sin^{2} (x)  +  \cos^{2} (x)

Respuestas

Respuesta dada por: msanpedrojorgep9vtr3
1

Recuerda:

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

 \sin {}^{2} (x)  +  \cos {}^{2} (x)  = 1

 \cot {}^{2} (x)  =  \csc {}^{2} (x) - 1

....

 \frac{ \cot {}^{2} (x) }{ \csc(x)  - 1}  =  \csc(x)  + (1)

 \cot {}^{2} (x)  =  (\csc(x)  + 1)( \csc(x)  - 1)

 \cot {}^{2} (x)  =  \csc {}^{2} (x)  -  {1}^{2}

 \cot {}^{2} (x)  =  \csc {}^{2} (x)  -  {1}^{}

 \cot {}^{2} (x)  =   \cot {}^{2} (x)

1 = 1

La expresion es verdadera.

Preguntas similares