10 ejemplos de racionalización

Respuestas

Respuesta dada por: yenko1925
8

Respuesta:

Explicación paso a paso:

Racionalización del tipo \cfrac{a}{b\sqrt{c}}

 

Se multiplica el numerador y el denominador por \sqrt{c}} .

 

\cfrac{a}{b\sqrt{c}}=\cfrac{a\cdot \sqrt{c}}{b\sqrt{c}\cdot \sqrt{c}}=\cfrac{a\cdot \sqrt{c}}{b\left ( \sqrt{c}\, \right )^{2}}=\cfrac{a\cdot \sqrt{c}}{b\cdot c}

 

Ejemplos

 

1 Racionalizarla expresión\cfrac{2}{3\sqrt{2}}

 

Multiplicamos numerador y denominador por la raíz de 2, realizamos los cálculos y simplificamos la fracción

 

\cfrac{2}{3\sqrt{2}}=\cfrac{2\cdot \sqrt{2}}{3\sqrt{2}\cdot \sqrt{2}}=\cfrac{2\cdot \sqrt{2}}{3\left ( \sqrt{2}\, \right )^{2}}=\cfrac{2\cdot \sqrt{2}}{3\cdot 2}=\cfrac{\sqrt{2}}{3}

 

2 Racionalizar la expresión \sqrt{2}+\cfrac{1}{\sqrt{2}}

 

Para poder realizar la suma racionalizamos el 2º sumando multiplicando y dividiendo por raíz de 2, y realizamos la suma

 

\sqrt{2}+\cfrac{1}{\sqrt{2}}=\sqrt{2}+\cfrac{\sqrt{2}}{\sqrt{2}\cdot \sqrt{2}}=\sqrt{2}+\cfrac{\sqrt{2}}{(\sqrt{2}\, )^{2}}

 

=\sqrt{2}+\cfrac{\sqrt{2}}{2}=\left ( 1+\cfrac{1}{2} \right )\sqrt{2}=\cfrac{3}{2}\, \sqrt{2}

 

Caso 2

 

Racionalización del tipo \cfrac{a}{b\sqrt[n]{c^{m}}}

 

Se multiplica numerador y denominador por \sqrt[n]{c^{n-m}}.

 

\cfrac{a}{b\sqrt[n]{c^{m}}}=\cfrac{a\cdot \sqrt[n]{c^{n-m}}}{b\cdot \sqrt[n]{c^{m}}\cdot \sqrt[n]{c^{n-m}}}=\cfrac{a\cdot \sqrt[n]{c^{n-m}}}{b\cdot \sqrt[n]{c^{m}\cdot c^{n-m}}}=\cfrac{a\cdot \sqrt[n]{c^{n-m}}}{b\cdot \sqrt[n]{c^{n}}}=\cfrac{a\cdot \sqrt[n]{c^{n-m}}}{b\cdot c}

 

Ejemplo

 

Racionalizar la expresión \cfrac{2}{3\sqrt[5]{4}}

 

El radicando 4 lo ponemos en forma de potencia: 2^{2}

Tenemos que multiplicar en el numerador y denominador por la raíz quinta de 2^{5-2}=2^{3}

Multiplicamos los radicales del denominador, extraemos factores del radical y simplificamos la fracción

 

\cfrac{2}{3\sqrt[5]{4}}=\cfrac{2}{3\sqrt[5]{2^{2}}}=\cfrac{2\cdot \sqrt[5]{c^{3}}}{3\cdot \sqrt[5]{2^{2}}\cdot \sqrt[5]{2^{3}}}=\cfrac{2\cdot \sqrt[5]{8}}{3\cdot \sqrt[5]{2^{5}}}=\cfrac{2\cdot \sqrt[5]{8}}{3\cdot 2}=\cfrac{\sqrt[5]{8}}{3}

 

Caso 3

 

Racionalización del tipo \cfrac{a}{\sqrt{b}+\sqrt{c}}

 

Y en general cuando el denominador sea un binomio con al menos un radical.

Se multiplica el numerador y denominador por el conjugado del denominador.

El conjugado de un binomio es igual al binomio con el signo central cambiado:

 

\begin{matrix} a+b & \rightarrow & a-b \\ \\ -a+b & \rightarrow & -a-b\\ \\ a-b & \rightarrow & a+b\\ \\ -a-b & \rightarrow & -a+b \end{matrix}

 

También tenemos que tener en cuenta que: "suma por diferencia es igual a diferencia de cuadrados".

 

(a+b)(a-b)=a^{2}-b^{2}

 

Ejemplos

 

1 Racionalizar la expresión \cfrac{2}{\sqrt{2}-\sqrt{3}}

 

Multiplicamos numerador y denominador por el conjugado del denominador, quitamos paréntesis en el numerador y efectuamos la suma por diferencia en el denominador, por lo que obtenemos una diferencia de cuadrados

 

\cfrac{2}{\sqrt{2}-\sqrt{3}}=\cfrac{2\cdot (\sqrt{2}+\sqrt{3})}{(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})}=\cfrac{2\sqrt{2}+2\sqrt{3}}{(\sqrt{2}\, )^{2}-(\sqrt{3}\, )^{2}}

 

En el denominador extraemos los radicandos y dividimos por -1, es decir, cambiamos el numerador de signo

Preguntas similares