Ayudsaaaaaaaaaaaaaaaa A y B

Adjuntos:

Respuestas

Respuesta dada por: huamanmalca
6

Explicación paso a paso:

a)

x = \frac{(1 -  \sqrt{2} ) }{(1  +  \sqrt{2} ) }

x = \frac{(1 -  \sqrt{2} ) }{(1  +  \sqrt{2} ) }  \times \frac{(1   -   \sqrt{2} ) }{(1   -    \sqrt{2} ) }

x =  \frac{ {(1})^{2} - 2 \times  \sqrt{2}  + {( \sqrt{2} )}^{2}  }{( {1})^{2} - {( \sqrt{2} ) }^{2}  }

x =  \frac{1 - 2 \times  \sqrt{2} + 2 }{1 - 2}

x =  \frac{3 - 2 \times  \sqrt{2} }{ - 1}

x = 2 \times  \sqrt{2}  - 3

b)

  x = \frac{1}{\sqrt{3} -  \sqrt{2}  }

x =  \frac{1}{( \sqrt{3} -  \sqrt{2})  }  \times  \frac{( \sqrt{3}   +   \sqrt{2}) }{( \sqrt{3}   +   \sqrt{2}) }

x =  \frac{( \sqrt{3} )^{2}  - 2 \times  \sqrt{3} \times  \sqrt{2} + ( \sqrt{2})^{2} }{( \sqrt{3} )^{2}  - ( \sqrt{2})^{2}  }

x =  \frac{3 - 2  \times \sqrt{2}  \times  \sqrt{3} + 2 }{3 - 2}

x = 5 - 2 \times  \sqrt{2}  \times  \sqrt{3}

Preguntas similares