• Asignatura: Matemáticas
  • Autor: fannyurquizo2
  • hace 9 años

cual es la funcion inversa de f(x)=x^3+10 y f(x)=√2x+1 ayudenme porfa :)

Respuestas

Respuesta dada por: cesitarcl96
2
Para hallar la función inversa tienes que despejar el x, el dominio de la funcion pasa el rango y viceversa
F(x)= x^{3} +10 \\ F(x)-10=x^{3}  \\  \sqrt[3]{ F(x)-10} =x \\ F*(x)= \sqrt[3]{ F(x)-10}
Donde el F(x) pasara a ser el nuevo x
Entonces  F*(x)= \sqrt[3]{x-10}

Lo mismo para el segundo problema, pero vemos que para que exista la raiz cuadrada el numero debe ser mayor o igual a 0
Por lo que el Dominio seria [0;∞>
Y su rango [1;∞>
Haciendo los mismos pasos
F(x)= \sqrt{2x} +1 \\ \\ F(x)-1= \sqrt{2x} \\ (F(x)-1) ^{2}  =2x \\ x= \frac{(F(x)-1) ^{2}}{2} \\ F*(x)= \frac{ (F(x)-1) ^{2}}{2}

Si la raiz contiene a todo el nuevo dominio seria [-1/2;∞>
F(x)= \sqrt{2x+1}  \\ \\ F(x)^{2} = 2x+1 \\ F(x)^{2}-1 =2x \\ x= \frac{F(x) ^{2}-1}{2} \\ F*(x)= \frac{ x ^{2}-1}{2}


fannyurquizo2: muchisisimas gracias pero me podrias ayudar haciendo otra vez, pero que la raíz le contenga todo no solo el 2X
Preguntas similares