calcula el rango, la varianza y la desviación típica de la distribución de la tabla x¡= 5,6,7,8,9 f¡= 8,9,5,2,1 ¡ POR FAVOR AYUDA RAPIDA!

Respuestas

Respuesta dada por: Zebster410
8

Respuesta:

1Hallar la desviación media, la varianza y la desviación típica de la series de números siguientes:

 

a  2, 3, 6, 8, 11.

b 12, 6, 7, 3, 15, 10, 18, 5.

 

Solución:

aPara la serie de números x_{1}=2, x_{2}=3, x_{3}=6, x_{4}=8, x_{5}=11 con n=5=N tenemos los siguientes cálculos.

Para la desviación media primero necesitamos calcular el valor de la media.

Media

\displaystyle { \bar{x} = \frac{x_1+x_2+...+x_n}{n} }

\displaystyle { \bar{x} = \frac{2+3+6+8+11}{5} =  6 }

Luego, calculamos el valor de la desviación media.

Desviación media

\displaystyle{ D_{\bar{x}} = \frac{\mid x_1 - \bar{x} \mid + \mid x_2 - \bar{x} \mid +...+ \mid x_N - \bar{x} \mid}{N} }

\displaystyle{ D_{\bar{x}} = \frac{\mid 2 - 6 \mid + \mid 3 - 6 \mid +\mid 6 - 6 \mid + \mid 8-6 \mid + \mid 11-6 \mid}{5}= \frac{14}{5} = 2.8 }

Ahora, calculamos el valor de la varianza.

Varianza

\displaystyle{\sigma^2=\frac{(x_1-\bar{x})^2+(x_2-\bar{x})^2+...+(x_n-\bar{x})^2}{N} \qquad \mbox{\'o} \qquad \sigma^2=\frac{x_1^2+x_2^2+...+x_n^2}{N}-\bar{x}^2 }

\displaystyle{ \sigma^2=\frac{(2-6)^2+(3-6)^2+(6-6)^2+(8-6)^2+(11-6)^2}{5} = \frac{54}{5}= 10.8 }

Y finalmente, calculamos el valor de la desviación típica.

Desviación típica

\displaystyle{\sigma=\sqrt{\frac{(x_1-\bar{x})^2+(x_2-\bar{x})^2+...+(x_n-\bar{x})^2}{N}} }

\displaystyle{ \sigma = \sqrt{10.8} = 3.28 }

 

bPara la serie de números x_{1}=12, x_{2}=6, x_{3}=7, x_{4}=3, x_{5}=15, x_{6}=10, x_{7}=18, x_{8}=5 con n=8=N tenemos los siguientes cálculos.

 

Para la desviación media primero necesitamos calcular el valor de la media.

Media

\displaystyle { \bar{x} = \frac{x_1+x_2+...+x_n}{n} }

\displaystyle { \bar{x} = \frac{12 + 6 + 7 + 3 + 15 + 10 + 18 + 5}{8} = \frac{76}{8}=9.5 }

Luego, calculamos el valor de la desviación media.

Desviación media

\displaystyle { D_{\bar{x}} = \frac{\mid x_1 - \bar{x} \mid + \mid x_2 - \bar{x} \mid +...+ \mid x_N - \bar{x} \mid}{N} }

\displaystyle { D_{\bar{x}} = \frac{\mid 12 - 9.5 \mid + \mid 6 - 9.5 \mid +\mid 7 - 9.5 \mid + \mid 3-9.5 \mid + \mid 15-9.5 \mid + \mid 10-9.5 \mid + \mid 18-9.5 \mid + \mid 5-9.5 \mid}{8}= \frac{32}{8} = 4 }

Ahora, calculamos el valor de la varianza.

Varianza

\displaystyle {\sigma^2=\frac{(x_1-\bar{x})^2+(x_2-\bar{x})^2+...+(x_n-\bar{x})^2}{N} \qquad \mbox{\'o} \qquad \sigma^2=\frac{x_1^2+x_2^2+...+x_n^2}{N}-\bar{x}^2 }

\displaystyle { \sigma^2 = \frac{12^2+6^2+7^2+3^2+15^2+10^2+18^2+5^2}{8}-9.5^2 = 23.75 }

Y finalmente, calculamos el valor de la desviación típica.

Desviación típica

\displaystyle {\sigma=\sqrt{\frac{(x_1-\bar{x})^2+(x_2-\bar{x})^2+...+(x_n-\bar{x})^2}{N}} }

\displaystyle { \sigma = \sqrt{23.75} = 4.87}

Explicación:


hannariverafernandez: ESO NO TIENE NADA QUE VER
Zebster410: Al final, nadie respondio, que prefieres bro
nataliarestan: De todas formas gracias
Paralax123: :v
Respuesta dada por: disnaldacamargocerva
39

Respuesta:

Rango: dato mayor y dato menor

R/: 9-5

R/:4

la varianza :

52+67,5+30+10+5÷5=32,9

La desviación típica de x¡ es de raíz cuadrada 35=59160797831

Rango

R/: dato mayor y dato menor

R/: 9-1

R/:8

La varianza

52+67,5+30+10+5÷5=32,9

desviación típica de F¡ es de

Raiz cuadrada 25=5

Explicación:

Preguntas similares