• Asignatura: Física
  • Autor: lensi1208
  • hace 7 años

Un barco rectangular con área de sección transversal 20m^2 esta flotando en el agua.Después que un elefante entra al barco, el barco se hunde 0,15m.Encuentre el peso del elefante ( Tenga en cuenta que la densidad del agua es 10^3 Kg/m^3 Mediante el Principio de Arquímides

Respuestas

Respuesta dada por: alfonsoprimerop9xh20
0

Respuesta:

29400 Newtons

Explicación:

Se entiende que el peso del barco y su densidad no se contemplan, entonces todo depende del peso del elefante. Cuando el elefante entra al barco, se hunde 0.15 metros o 15 centímetros en un área de sección transversal o en un "piso" de 20 metros cuadrados, entonces si multiplicas ese piso por lo que se hundió, obtendrás el volumen que se sumergió el barco: V = (0.15m)(20m^{2}) = 3m^{3}

Según el principio de Arquímedes, el empuje que ejerce el agua hacia el barco es igual al peso del fluido(agua) desalojado, el peso del agua es igual a su masa por la gravedad, no se tiene la masa pero la densidad se define como la masa sobre el volumen de cualquier cuerpo; ahora entonces el fluido del agua desalojado o su peso es igual a la densidad del agua por el volumen por la gravedad:

E(empuje) = w(peso agua) = m(agua)g(gravedad); ρ=\frac{m}{V} -> m = ρV

E = ρVg

Sustituyendo los datos: E = (1000 \frac{kg}{m^{3} })(3m^{3})(9.8\frac{m}{s^{2} }) = 29400 Newtons

Como el barco flota con el elefante entonces el empuje del agua hacia el barco es igual al peso del elefante:

w(elefante) = E : m(elefante)g = 29400N  

Y si quieres saber la masa del elefante:

m(elefante) = \frac{29400N}{9.8 \frac{m}{s^{2} } } = 3000 kg

Preguntas similares