• Asignatura: Matemáticas
  • Autor: estefanyrouge
  • hace 7 años

Considera el conjunto de enteros mayores o iguales que 2n – 3 y menores o iguales que 2n + 2, con n entero positivo. Respecto a este conjunto, ¿cuál(es) de las siguientes afirmaciones es(son) siempre verdadera(s)? I) el conjunto no contiene al cero. II) la suma de todos los números pares del conjunto es igual a la suma de todos los números impares del conjunto. III) el cuociente entre cualquier pareja de números que pertenecen al intervalo [2n - 3, 2n + 2] no es un número entero. necesito el porque porfavor

Respuestas

Respuesta dada por: lolas22
0

Respuesta:

usa la app s o c r a t i c que te lo resuelve!!!

Respuesta dada por: xXFASEDOGXx321
0

Respuesta:

Explicación paso a paso:

Un conjunto o colección lo forman unos elementos de la misma naturaleza, es decir, elementos diferenciados entre sí pero que poseen en común ciertas propiedades o características, y que pueden tener entre ellos, o con los elementos de otros conjuntos, ciertas relaciones.

  Un conjunto puede tener un número finito o infinito de elementos, en matemáticas es común denotar a los elementos mediante letras minúsculas y a los conjuntos por letras mayúsculas, así por ejemplo:

C = {a, b, c, d, e, f, g, h}

  En ocasiones un conjunto viene expresado por la propiedad (o propiedades) que cumplen sus elementos, por ejemplo:

es el conjunto de los números reales comprendidos entre el 1 y el 2 ( incluidos ambos).

 Dos conjuntos A y B son iguales, expresado A = B, solamente cuando constan de los mismos elementos.

 1. 2  Diversos conjuntos numéricos.

 En Matemáticas empleamos diversos conjuntos de números, los más elementales son:

  N = {0, 1, 2, 3, 4, 5, ... }  . El conjunto de los números naturales, o números que sirven para contar.

  Z = {..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ... }  . El conjunto de los números enteros, o números que sirven para designar cantidades enteras (positivas o negativas).

 Q = {...., -7/2,..., -7/3, ..., -5/4,... -5/1, ...0, ..., 2/133, ... 4/7 ... } . El conjunto de los números racionales, o números que pueden ser expresados como un cociente (quotient) entre dos enteros, fracción, p/q. Observen que algunos números con infinitos decimales tal como el 2,33333... pertenece a este conjunto, puesto que: 2,33333... = 7/3.

 No obstante, en Q no se hallan algunos números como 1,4142136... (raíz cuadrada de 2) , o el 3,141592... (el número p ) que poseen infinitos decimales pero no pueden expresarse en la forma p/q. A estos números se les llama "números irracionales".

 R = Q U {"números irracionales"}  . El conjunto de los números reales, formado por la unión de Q y de todos los números irracionales. Este conjunto suele denominarse recta real , pues los puntos de una recta pueden ponerse en correspondencia con los infinitos números de R.

Preguntas similares