1.- Para el péndulo simple mostrado, cuanto debe valer la rapidez de la particula en dicha
posición (punto A), para que la fuerza de tensión en el hilo sea igual a la magnitud de su peso,
longitud del hilo (L = 1 m).
Respuestas
Respuesta:
Si está muy bien lo que hisiste
Respuesta:
pendule simple
Explicación:Un péndulo simple se define como una partícula de masa m suspendida del punto O por un hilo inextensible de longitud l y de masa despreciable.
Si la partícula se desplaza a una posición θ0 (ángulo que hace el hilo con la vertical) y luego se suelta, el péndulo comienza a oscilar.
El péndulo describe una trayectoria circular, un arco de una circunferencia de radio l. Estudiaremos su movimiento en la dirección tangencial y en la dirección normal.
Las fuerzas que actúan sobre la partícula de masa m son dos
el peso mg
La tensión T del hilo
Descomponemos el peso en la acción simultánea de dos componentes, mg·senθ en la dirección tangencial y mg·cosθ en la dirección radial.
Ecuación del movimiento en la dirección radial
La aceleración de la partícula es an=v2/l dirigida radialmente hacia el centro de su trayectoria circular.
La segunda ley de Newton se escribe
man=T-mg·cosθ
Conocido el valor de la velocidad v en la posición angular θ podemos determinar la tensión T del hilo.
La tensión T del hilo es máxima, cuando el péndulo pasa por la posición de equilibrio, T=mg+mv2/l
Es mínima, en los extremos de su trayectoria cuando la velocidad es cero, T=mgcosθ0
Principio de conservación de la energía
En la posición θ=θ0 el péndulo solamente tiene energía potencial, que se transforma en energía cinética cuando el péndulo pasa por la posición de equilibrio.