una persona coloca 875$ en una entidad financiera. esta le ofrece 12% de inetres simple anual los dos primeros años y apartir de este lapso el 8% de interés compuesto anual hasta completar 8 meses mas. ¿cuanto gano en total la parsona?
Respuestas
Respuesta: En total ganó $267,12
Explicación paso a paso:
En los 2 primeros años.
I = (C . P . T)/100, donde I es el monto de los intereses ganados por un capital C, durante T años a un porcentaje de interés simple del P%.
En nuestro caso, I = (875 X 12 X 2)/100
I = 21 000/100
I = 210
El capital al final de los 2 primeros años es 875 + 210 = 1085
En los 8 meses siguientes.
El interés compuesto se define por la siguiente expresión:
Cf = Ci( 1 + r/100)^t, donde Ci es el capital inicial, r es la tasa de interés anual, t el número de años y Cf el capital final.
En nuestro caso, Ci = 875 + 210 = 1085; r = 8, t = 8/12. Entonces:
Cf = 1085[1 + (8/100)]^(8/12)
Cf = 1085[1 + 0,08]^0,6666
Cf = 1085[1,08]^0,6666
Cf = 1085[1,05264]
Cf = 1142,12
Como el capital final es 1142,12, la persona ganó:
1142,12 - 875 = 267,12