si senx + cosx = 1/2 hallar k=cos3x - sen3x
CarlosMath:
3 es exponente o factor de x?
Respuestas
Respuesta dada por:
7
Por otra parte
entonces
Respuesta dada por:
4
senx + cosx = 1/2
k = cos3x - sen3x
k = cons3x - sen3x
k = cos(2x + x) - sen(2x + x)
k = cos2x cosx - sen2x senx - sen2x cosx - cos2x senx
k = cos2x cosx - cos2x senx - sen2x senx - sen2x cosx
k = cos2x (cosx - senx) - sen2x (senx + cosx)
k = (cos^2 x - sen^2 x)(cosx - senx) - 2senx cosx (senx + cosx)
k = (cosx + senx)(cosx - senx) (cosx - senx) - 2 senx cosx (senx + cosx)
k = (cosx + senx) [(cosx - senx)(cosx - senx) - 2 cosxsenx]
k = (cosx + senx) (cos^2 x - 2cosx + sen^2 - 2 cosx senx)
k = (cosx + senx) (1 - 4 cosx senx)
k = (1/2) (1 - 4 cosx senx)
k = (1/2) - 2 cosx senx
senx + cosx = 1/2 Elevas al cuadrado ambos lados para no alterar
(senx + cosx)^2 = (1/2)^2
sen^2 x + 2senx cosx + cos^2 x = 1/4
1 + 2 senx cosx = 1/4
2 senx cosx = (1/4) - 1
2 senx cosx = -3/4
k = (1/2) - (-3/4)
k = (1/2) + (3/4)
k = 5/4
k = cos3x - sen3x
k = cons3x - sen3x
k = cos(2x + x) - sen(2x + x)
k = cos2x cosx - sen2x senx - sen2x cosx - cos2x senx
k = cos2x cosx - cos2x senx - sen2x senx - sen2x cosx
k = cos2x (cosx - senx) - sen2x (senx + cosx)
k = (cos^2 x - sen^2 x)(cosx - senx) - 2senx cosx (senx + cosx)
k = (cosx + senx)(cosx - senx) (cosx - senx) - 2 senx cosx (senx + cosx)
k = (cosx + senx) [(cosx - senx)(cosx - senx) - 2 cosxsenx]
k = (cosx + senx) (cos^2 x - 2cosx + sen^2 - 2 cosx senx)
k = (cosx + senx) (1 - 4 cosx senx)
k = (1/2) (1 - 4 cosx senx)
k = (1/2) - 2 cosx senx
senx + cosx = 1/2 Elevas al cuadrado ambos lados para no alterar
(senx + cosx)^2 = (1/2)^2
sen^2 x + 2senx cosx + cos^2 x = 1/4
1 + 2 senx cosx = 1/4
2 senx cosx = (1/4) - 1
2 senx cosx = -3/4
k = (1/2) - (-3/4)
k = (1/2) + (3/4)
k = 5/4
Preguntas similares
hace 7 años
hace 7 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años