Respuestas
Respuesta:
1) Volumen Pirámide de base Circular
V₁ = (1/3) * B * H
- Area Base (B₁);
B₁ = π*r₁² = π*(9/2)²
B₁ = 81π/4 m²
- Altura(H₁) = 4.8m
- Volumen(V₁);
V₁ = (1/2)*(81π/4 m²)*(4.8m)
V₁ = (243/5)*π m³ ≈ 152.68 m³
2.)
- Medida del diámetro;
H = 4.8m - 0.8m = 4m
r₁ = 4.5 m
H₂ = 0.8m
Vpiramide_truncada + Vpiramide_base circ. = V₁
(1/3) *π * H*(r₁² + r₂² + r₁*r₂) + (1/3)*π*r₂²*H₂ = (243/5)*π
(1/3)*π*4*(4.5² + r₂² + 4.5r₂) + (1/3) *π*r₂²*0.8 = (243/5)*π
27π + (4/3)*πr₂² + 6πr₂ + (4/15)*πr₂² = (243/5)*π
27 + (4/3)r₂² + 6r₂ + (4/15)*r₂² = (243/5)
405 + 20r₂² + 90r₂ + 4r₂² = 729
24r₂² + 90r₂ - 324 = 0
12r₂² + 45r₂ - 162 = 0
r₂ = 9/4 m
Diametro = 2*r₂ = 2(9/4)=18/4 m = 4.5m
- Volumen del Cono Vacio;
V₂ = (1/3)*π*r₂²*H₂
V₂ = (1/3)*π*(9/4)²*(0.8)
V₂ = (27/20)*π m³ ≈ 4.24m³
- Volumen Útil ó Utilizable;
V = V₁ - V₂ = (243/5)*π m³ - (27/20)*π m³
Vutil = (189/4)*π m³ ≈ 148.44 m³