la suma de los 8 primeros terminos de progresion geometrica es 35/4 y la razon es 1/2. Hallar el primer termino

Respuestas

Respuesta dada por: Anónimo
2
aqui tenemos como datos 

S_{8}=\frac{35}{4}\ \ y\ \ r=\frac{1}{2}

La formula para hallar los primeros terminos de una progresion geometrica es 

S_{n}=\frac{a_{n}\cdot r-a_{1}}{r-1}

Nosotros estamos en esta situacion

S_{8}=\frac{a_{8}\cdot r-a_{1}}{r-1}\\ \\\frac{35}{4}=\frac{a_{8}\cdot\frac{1}{2}-a_{1}}{\frac{1}{2}-1}\\ \\\frac{35}{4}=\frac{\frac{a_{8}}{2}-a_{1}}{-\frac{1}{2}}\\ \\(-\frac{1}{2}\cdot\frac{35}{4})=\frac{a_{8}}{2}-a_{1}\\ \\-\frac{35}{8}=\frac{a_{8}}{2}-a_{1}\\ \\a_{1}-\frac{a_{8}}{2}=\frac{35}{8}

Ahora multiplico por 8 a toda la ecuacion para quitarme el denominador 8

8\cdot a_{1}-8\cdot\frac{a_{8}}{2}=8\cdot\frac{35}{8}\\ \\8a_{1}-4a_{8}=35

Ahora como

a_{8}=a_{1}\cdot\frac{1}{2}^{(8-1)}\\ \\a_{8}=a_{1}\cdot\frac{1}{2}^{7}

sustituimos su valor en la ecuacion

8a_{1}-4a_{8}=35\\ \\ 8a_{1}-4(a_{1}\cdot\frac{1}{2}^{7})=35\\ \\8a_{1}-4a_{1}\cdot\frac{1}{2^{7}}=35\\ \\8a_{1}-4a_{1}\cdot\frac{1}{128}=35\\ \\8a_{1}-\frac{a_{1}}{32}=35

Ahora multiplico por 32  a toda la ecuacion para quitarme ese denominador 32 que tenemos ahi

32\cdot8a_{1}-32\cdot\frac{a_{1}}{32}=32\cdot35\\ \\256a_{1}-a_{1}=1120\\ \\255a_{1}=1120\\ \\a_{1}=\frac{1120}{255}\\ \\a_{1}=\frac{224}{51}
Preguntas similares