⦁ De un recipiente se saca la mitad de su contenido y luego su quinta parte, quedando aún 6 litros, ¿cuántos litros había en el recipiente?
Respuestas
Respuesta:
10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a partir de diferentes datos y representarla gráficamente. Representar estas funciones de diferentes maneras. Comparar funciones de este tipo. Aproximar números y calcular el error absoluto y relativo. Resolver problemas reales en los que intervienen estas funciones. Antes de empezar 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 2.Función afín pág. 172 Definición Representación gráfica 3.Ecuación de la recta pág. 174 Forma punto-pendiente Recta que pasa por dos puntos Forma general 4.Posición relativa de dos rectas pág. 178 Análisis en forma explícita Análisis en forma general 5.Aplicaciones.. pág. 180 Problemas simples Problemas combinados Ejercicios para practicar Para saber más Resumen Autoevaluación Actividades para enviar al tutor MATEMÁTICAS 3º ESO 167
2 168 MATEMÁTICAS 3º ESO
3 Antes de empezar Investiga Si una sandía pesa 3kg y otra pesa 6kg nos cobrarán el doble por la segunda. Pero, si la primera tiene un diámetro de 15 cm y la otra lo tiene de 30 cm, el precio de la segunda será el doble que el de la primera? Intenta encontrar la respuesta y dar una explicación razonada a la misma. MATEMÁTICAS 3º ESO 169
4 1. Función de proporcionalidad directa Definición Se llama función de proporcionalidad directa o, simplemente, función lineal a cualquier función que relacione dos magnitudes directamente proporcionales (x,y). Su ecuación tiene la forma y = mx ó f(x) = mx El factor m es la constante de proporcionalidad y recibe el nombre de pendiente de la función porque, como veremos en la siguiente sección, indica la inclinación de la recta que la representa gráficamente. Recuerda: dos magnitudes son directamente proporcionales si su cociente es constante. Representación gráfica Como has visto, las funciones lineales se representan gráficamente como líneas rectas. Además, como y=mx, si x=0 entonces y=0; por lo tanto la gráfica de todas las funciones lineales pasa por el punto (0,0). Para dibujar la gráfica basta con obtener las coordenadas de otro punto, dando un valor arbitrario a la x e unir ese punto con el origen de coordenadas (0,0). Si x=1, entonces y=m, por tanto m representa la variación de la y por cada unidad de x, es decir, la inclinación o pendiente de la recta. Si m es positiva, representa la cantidad que sube la y por cada unidad de x y si m es negativa la cantidad que baja. 170 MATEMÁTICAS 3º ESO
5 EJERCICIOS resueltos 1. Determina si las relaciones entre las parejas de magnitudes siguientes son lineales o no, escribiendo para ello la ecuación que las relaciona. a. Relación entre el precio inicial y el precio rebajado con un 10%. b. Relación entre el peso y el volumen de un material en condiciones constantes de presión y temperatura. c. Un banco ofrece un depósito anual al 5% con una comisión fija de 20. Relación entre la cantidad invertida y los intereses recibidos. d. Relación entre el área de un cuadrado y la longitud de su lado. Solución: a) Si el descuento es 10% pago el 90%: PRebajado = 0 9 PInicial (SÍ es lineal) b) La relación entre peso (P) y volumen (V) es la densidad (d), que es constante si no cambian las condiciones de presión y temperatura: P = d V (SÍ es lineal) c) Si C es la cantidad invertida e I son los intereses I = 0 05 C 20 (NO es lineal, pero casi lo es. En realidad es una función afín que veremos en el siguiente capítulo) d) A = long 2 (NO es lineal) 2. Determina las ecuaciones de las funciones lineales cuyas gráficas son: a. Buscamos un punto de coordenadas enteras (no es estrictamente necesario pero es más 7 cómodo si es posible). a = 2, b = 7. La pendiente es m=7/2 y la ecuación es y = x 2 b. En este caso a = 5 y b = -4 (le asignamos un valor negativo porque la recta es 4 decreciente). La pendiente es, pues, m = -4/5 y la ecuación y = x 5 MATEMÁTICAS 3º ESO 171
Explicación paso a paso:
Respuesta:
si le quita la quinta parte en el contenido queda 6 litros . osea 6 litros es equivalente a la 4 partes que queda en el contenido osea dividimos 6 entre 4 = 1,5 entonces a 6 le agregamos 1,5 seria 7,5 esa cantidad es la mitad del total del contenido entonces si la mitad del contenido es 7,5 la otra mitad tambien seria 7,5 que sumandolos seria 15 litros