Respuestas
Respuesta dada por:
3
sea ab =7(a+b)
al descomponer
ab
10a+b= 7a+7b
10a-7a=7b-b
3a=6b
a=6b/3
a=2b
se puede ver que a es multiplo de 2
ab es numeral entonces 1≤a≤9 y 1≤b≤9
entonces los valores de a son { 2,4,6,8} y como a=2b
si a=2 ⇒2=2b⇒b=2/2⇒b=1
ab=21
si a=4⇒4=2b⇒b=4/2⇒b=2
ab=42
se sigue un procedimiento igual al anterior
si a=6
ab=63
si a=8
ab=84
por lo que hay 4 numerales ab con la condicion pedida
al descomponer
ab
10a+b= 7a+7b
10a-7a=7b-b
3a=6b
a=6b/3
a=2b
se puede ver que a es multiplo de 2
ab es numeral entonces 1≤a≤9 y 1≤b≤9
entonces los valores de a son { 2,4,6,8} y como a=2b
si a=2 ⇒2=2b⇒b=2/2⇒b=1
ab=21
si a=4⇒4=2b⇒b=4/2⇒b=2
ab=42
se sigue un procedimiento igual al anterior
si a=6
ab=63
si a=8
ab=84
por lo que hay 4 numerales ab con la condicion pedida
Respuesta dada por:
0
Nos piden hallar cuantos numerales ab existen tal que se cumpla:
ab = 7(a+b)
Para esto descomponemos ab:
----> 10(a) + b = 7(a) + 7(b)
----> 10(a) - 7(a) = 7(b) - b
----> 3(a) = 6(b)
----> a = 2(b)
Luego tenemos que: "a" es múltiplo de 2, es decir, "a" es par; pero ademas como ab es numeral, entonces 1≤a≤9 y 0≤b≤9
Entonces los valores de "a" son: a={2, 4, 6, 8} y como a=2(b)
---> si a=2 ----> 2=2(b) ---> b=1 ⇒ ab=21
---> si a=4 ----> 4=2(b) ---> b=2 ⇒ ab=42
---> si a=6 ----> 6=2(b) ---> b=3 ⇒ ab=63
---> si a=8 ----> 8=2(b) ---> b=4 ⇒ ab=84
Por tanto existen 4 numerales ab con la condición dada.
Preguntas similares
hace 6 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años