• Asignatura: Matemáticas
  • Autor: mickiemicks96
  • hace 8 años

Por el metodo de igualación resuelva las siguientes ecuaciones.

a) 3x + 2y = 3
b) -x + 5y = 16

(encuentra el valor de "x" y "y") ​

Respuestas

Respuesta dada por: charliej2002
1

Respuesta:

x=-1

y=3

Explicación paso a paso:

Encuentra la x e y.

3x+2y=3

Resta por 2y desde ambos lados.

3x+2y-2y=3-2y

Resolver.

3x=3-2y

Luego, divides entre 3 de ambos lados.

3x/3=3/3-2y/3

Resolver.

x=3-2y/3

Resolver: ⇒ x=3-2y/3

[3-2y/3+5y=16]

Multiplicar por 3 desde ambos lados.

\displaystyle \mathsf{-\frac{3-2y}{3}\cdot \:3+5y\cdot \:3=16\cdot \:3}}

Resolver.

\displaystyle \mathsf{-\left(3-2y\right)+15y=48}}}

Expandir.

Propiedad distributiva:

A(B+C)=AB+AC

-(3-2y)+15y

-3+2y+15y

2y+15y=17y

-3+17y

-3+17y=48

Añadir un 3 por ambos lados.

-3+17y+3=48+3

Resolver.

17y=51

Dividir por 17 desde ambos lados.

17y/17=51/17

Resolver.

\Large\boxed{\mathsf{y=3}}}

x=3-2*3/3

3-2*3

2*3=6

3-6/3

3-6=-3

-3/3=-1

\Large\boxed{\mathsf{x=-1}}

\Rightarrow \Large\boxed{\mathsf{x=-1,\quad  y=3}}}

Preguntas similares