se tienen los conjuntos A=[1;3] y B=[2;4],
donde su producto cartesiano es
[(1;a) , (b;4) , (c;2) , (3;d)]
calcula (a x b) + (c x d )
Respuestas
Respuesta:
Sean A y B conjuntos. Al conjunto formado por todos los pares ordenados de primera componente en A y segunda componente en B, se le denota A x B y se le llama producto cartesiano de A y B. Simbólicamente:
A x B = {(x, y) / x ∈ A ∧ y ∈ B}.
En consecuencia:
(x, y) ∈ A x B ⇔ x ∈ A ∧ y ∈ B
(x, y) ∉ A x B ⇔ x ∉ A ∨ y ∉ B
En particular, siendo R el conjunto de los números reales, se tiene:
R x R = {(x, y) / x ∈R ∧ y ∈ R }.
R x R es el conjunto de todas las parejas de números reales. La representación geométrica de R x R es el plano cartesiano llamado también plano numérico.
Se establece una relación biunívocaentreR x Ry el conjunto de los puntos del plano geométrico, asociándose de esta forma el par ordenado (x, y) con el punto P(x,y).
Explicación paso a paso:
Ejemplo 1:
Sean A = {1, 2} y B = {3, 4, 5} el producto cartesiano A x B será:
A x B = {(1, 3),(1, 4),(1, 5),(2, 3),(2, 4),(2, 5)}.
Ejemplo 2:
Sean A = {x / x ∈R∧1 < x ≤ 3 },
B = {x / x ∈R∧-2 ≤ x < 2 }.
Su representación geométrica es:
A x B es el conjunto de los puntos interiores al rectángulo PQRS y los puntos que pertenecen a los segmentos PQ y QR.
Ejemplo 3:
Sean A = {x / x ∈N∧1 ≤ x < 4}, B = {x / x ∈R ∧1 ≤ x ≤ 3}.
Representar A x B en el plano cartesiano.
Respuesta:
14
Explicación paso a paso:
espero que te ayude :D