Verificar
1. sen (u+v) x sen (u-v) = sen 2 u - sen 2 v

2. cos (u+v) x cos (u-v) = cos 2 u - sen 2 v

Respuestas

Respuesta dada por: CarlosMath
5
A=\sin(u-v)\times \sin(u-v)\\ \\

\cos(x+y)-\cos(x-y)=-2\sin x\cos y \\ \\
\boxed{\sin x\cos y = \frac{1}{2}[\cos(x-y)-\cos(x+y)]} \\ \\ \\
\text{Entonces}\\
\sin(u+v)\sin(u-v)=\frac{1}{2}[\cos(2v)-\cos(2u)] \\ \\
\sin(u+v)\sin(u-v)=\frac{1}{2}[(1-2\sin^2v)-(1-2\sin^2u)] \\ \\
\sin(u+v)\sin(u-v)=\frac{1}{2}(2\sin^2u-2\sin^2v)\\ \\
\boxed{\sin(u+v)\sin(u-v)=\sin^2u-\sin^2v}\\ \\

2)

\cos(x+y)+\cos(x-y)=2\cos x\cos y\\ \\
\boxed{\cos x\cos y = \frac{1}{2}[\cos(x+y)+\cos(x-y)]} \\ \\ \\
\text{Entonces}\\
\cos(u+v)\cos(u-v)=\frac{1}{2}[\cos(2u)+\cos(2v)]\\ \\
\cos(u+v)\cos(u-v)=\frac{1}{2}[(2\cos^2u-1)+(1-2\sin^2v)]\\ \\
\cos(u+v)\cos(u-v)=\frac{1}{2}(2\cos^2u-2\sin^2v)\\ \\
\boxed{\cos(u+v)\cos(u-v)=\cos^2u-\sin^2v}

Preguntas similares