Como se muestra en la figura, un rayo de luz incide sobre la cara vertical de un cubo de vidrio de índice de refracción n=1.5 inmerso en agua (n=4/3). ¿Cuál debe ser el ángulo de incidencia para que el rayo tenga reflexión interna total en la cara superior del cubo?
Respuestas
La ley de la reflexión nos dice que si $\alpha$ es el ángulo que forma el rayo incidente con la normal (=perpendicular) al espejo, entonces el rayo reflejado forma también un ángulo $\alpha$ con la normal. Por tanto, el ángulo que forma el rayo reflejado con el incidente es de $2\alpha$.
Si ahora, sin mover el rayo el incidente, giramos el espejo un ángulo $\theta$ (y por tanto, normal al espejo también gira el mismo ángulo), entonces el ángulo de incidencia será de $\alpha+\theta$, y el ángulo de reflexión también será $\alpha+\theta$. El rayo reflejado con respecto al incidente forma un ángulo de $2\alpha+2\theta$, o lo que es lo mismo, ha aumentado en $2\theta$ con respecto al primer caso.
La ley de la reflexión nos dice que si $\alpha$ es el ángulo que forma el rayo incidente con la normal (=perpendicular) al espejo, entonces el rayo reflejado forma también un ángulo $\alpha$ con la normal. Por tanto, el ángulo que forma el rayo reflejado con el incidente es de $2\alpha$.
Si ahora, sin mover el rayo el incidente, giramos el espejo un ángulo $\theta$ (y por tanto, normal al espejo también gira el mismo ángulo), entonces el ángulo de incidencia será de $\alpha+\theta$, y el ángulo de reflexión también será $\alpha+\theta$. El rayo reflejado con respecto al incidente forma un ángulo de $2\alpha+2\theta$, o lo que es lo mismo, ha aumentado en $2\theta$ con respecto al primer caso.