2x²+3x-4=0
solución de esta ecuación cuadrática

Respuestas

Respuesta dada por: JuanCarlosAguero
4

Respuesta:

x_{1} = \frac{-3 + \sqrt{41}}{4} \:  \:  \:  \:  \:  \:  \:  \: x_{2} = \frac{-3 - \sqrt{41}}{4}

Explicación paso a paso:

Forma de una ecuación cuadrática:

a {x}^{2}  + bx + c = 0

Ecuación:

2 {x}^{2}  + 3x - 4 = 0

Fórmula general:

x_{1;2} = \frac{-b \pm \sqrt{b^2 - 4ac }}{2a}

x_{1;2} = \frac{-3\pm \sqrt{3^2 - 4(2)( - 4) }}{2(2)}

x_{1;2} = \frac{-3\pm \sqrt{9 - 4( - 8) }}{4}

x_{1;2} = \frac{-3\pm \sqrt{9 + 32}}{4}

x_{1;2} = \frac{-3\pm \sqrt{41}}{4}

Las respuestas son:

x_{1} = \frac{-3 + \sqrt{41}}{4} \:  \:  \:  \:  \:  \:  \: x_{2} = \frac{-3 - \sqrt{41}}{4}

Respuesta dada por: pao21capataz
0

Respuesta:

es negativa, por lo tanto no tiene solución.

Preguntas similares