• Asignatura: Química
  • Autor: claudiaxaa
  • hace 8 años

que ventajas ofrece un semiconductor extrínseco con respecto a un semi conductor intriseco​

Respuestas

Respuesta dada por: p1u2l3ga
2

Respuesta:

Un material semiconductor hecho sólo de un único tipo de átomo, se denomina semiconductor intrínseco.

Los más empleados históricamente son el germanio (Ge) y el silicio (Si); siendo éste último el más empleado (por ser mucho más abundante y poder trabajar a temperaturas mayores que el germanio).

Cada átomo de un semiconductor tiene 4 electrones en su órbita externa (electrones de valencia), que comparte con los átomos adyacentes formando 4 enlaces covalentes. De esta manera cada átomo posee 8 electrones en su capa más externa., formando una red cristalina, en la que la unión entre los electrones y sus átomos es muy fuerte. Por consiguiente, en dicha red, los electrones no se desplazan fácilmente, y el material en circunstancias normales se comporta como un aislante.

Sin embargo, al aumentar la temperatura, los electrones ganan energía, por lo que algunos pueden separarse del enlace e intervenir en la conducción eléctrica. De esta manera, la resistividad de un semiconductor disminuye con la temperatura (su conductividad aumenta). A temperatura ambiente, algunos electrones de valencia absorben suficiente energía calorífica para librarse del enlace covalente y moverse a través de la red cristalina, convirtiéndose en electrones libres. Si a estos electrones, se les somete al potencial eléctrico, como por ejemplo de una pila, se dirigen al polo positivo. Cuando un electrón libre abandona el átomo de un cristal de silicio, deja en la red cristalina un hueco, cuyo efecto es similar al que provocaría una carga positiva.

Los electrones y los huecos reciben el nombre de portadores. La conducción eléctrica a través de un semiconductor es el resultado del movimiento de electrones (de carga negativa) y de los huecos (cargas positivas) en direcciones opuestas al conectarse a un generador. Si se somete el cristal a una diferencia de potencial se producen dos corrientes eléctricas: una debida al movimiento de los electrones libres de la estructura cristalina, y otra debida al desplazamiento de los electrones en la banda de valencia, que tenderán a saltar a los huecos próximos, originando una corriente de huecos. Los electrones libres se dirigen hacia el polo positivo de la pila (cátodo), mientras que los huecos pueden considerarse como portadores de carga positiva y se dirigen hacia el polo negativo de la pila, llamado ánodo (hay que considerar que por el conductor exterior sólo circulan los electrones que dan lugar a la corriente eléctrica; los huecos sólo existen en el seno del cristal semiconductor).

Semiconductores extrínsecos

Para mejorar las propiedades de los semiconductores, se les somete a un proceso de impurificación (llamado dopaje), consistente en introducir átomos de otros elementos con el fin de aumentar su conductividad. El semiconductor obtenido se denominará semiconductor extrínseco. Según la impureza (llamada dopante) distinguimos:

Semiconductor tipo P : se emplean elementos trivalentes (3 electrones de valencia) como el Boro (B), Indio (In) o Galio (Ga) como dopantes. Puesto que no aportan los 4 electrones necesarios para establecer los 4 enlaces covalentes, en la red cristalina éstos átomos presentarán un defecto de electrones (para formar los 4 enlaces covalentes). De esa manera se originan huecos que aceptan el paso de electrones que no pertenecen a la red cristalina. Así, al material tipo P también se le denomina donador de huecos (o aceptador de electrones).

Semiconductor tipo N: Se emplean como impurezas elementos pentavalentes (con 5 electrones de valencia) como el Fósforo (P), el Arsénico (As) o el Antimonio (Sb). El donante aporta electrones en exceso, los cuales al no encontrarse enlazados, se moverán fácilmente por la red cristalina aumentando su conductividad. De ese modo, el material tipo N se denomina también donador de electrones.

Preguntas similares