Resuelve las siguientes ecuaciones trigonométricas:

a) cos 2x + 3sen x =2
b) cos x + sen x =1
c) sen x · cos x +12sen x =0

Respuestas

Respuesta dada por: msanpedrojorgep9vtr3
1

a)

 \cos(2x)  + 3 \sin(x)  = 2 \\ 1 -  \sin( {x}^{} ) {}^{2}   -  \sin(x) {}^{2} + 3 \sin(x)    - 2 = 0 \\  - 2 \sin(x)  {}^{2}  + 3 \sin(x)  - 1 = 0 \\ 2 \sin(x)  {}^{2}  - 3 \sin(x)  + 1 = 0 \\ (\sin(x)   - 1)( 2\sin(x)  - 1) = 0 \\  \sin(x )  = 1 \:  \:  \:   o \:  \:  \:  \sin(x)  =  \frac{1}{2}  \\ x =  \frac{\pi}{2}   + 2k\pi \:  \:  \:  o \:  \:  \: x =  \frac{\pi}{6}  + 2k\pi \:  \:  \: o \:  \:  \: x =  \frac{5\pi}{6}  + 2k\pi

b)

 \cos(x)  +  \sin(x)  = 1 \\  \cos(x)  = (1 -  \sin(x) ) \\  \cos(x)  {}^{2}  = 1 - 2 \sin(x)  +  \sin(x)  {}^{2}  \\ 1 -  \sin(x)  {}^{2}  = 1 - 2 \sin(x)  +  \sin(x)  {}^{2}  \\ 2 \sin(x) {}^{2}   - 2 \sin(x)  = 0 \\ 2 \sin(x) ( \sin(x)  - 1) = 0 \\  \sin(x)  = 0 \:  \:  \: o \:  \:  \:  \sin(x)  = 1 \\ x = 2k\pi \:  \:  \: o \:  \:  \: x =  \frac{\pi}{2}  + 2k\pi

c)

 \sin(x)  \cos(x)  + 12 \sin( x )  = 0 \\  \\  \sin(x) ( \cos(x)  - 12) = 0 \\  \sin(x)  = 0 \:  \:  \: o \:  \:  \:  \cos(x)  = 12 \\  \sin(x)  = 0 \:  \:  \: o \:  \:  \: (no \: existe) \\  \sin(x)  = 0 \\ x = 2k\pi \:  \:  \: o \:  \:  \: x = \pi + 2k\pi

Preguntas similares